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Human diseases are characterized by intricate cellular dynamics. Single-cell
transcriptomics provides critical insights, yet a persistent gap remainsin
computational tools for detailed disease progression analysis and targeted
insilico druginterventions. Here we introduce UNAGI, a deep generative
neural network tailored to analyse time-series single-cell transcriptomic
data. This tool captures the complex cellular dynamics underlying disease
progression, enhancing drug perturbation modelling and screening.

When applied to a dataset from patients with idiopathic pulmonary
fibrosis, UNAGl learns disease-informed cell embeddings that sharpen

our understanding of disease progression, leading to the identification of
potential therapeutic drug candidates. Validation using proteomics reveals
the accuracy of UNAGI'’s cellular dynamics analysis, and the use of the
fibrotic cocktail-treated human precision-cut lung slices confirms UNAGI'’s
predictions that nifedipine, an antihypertensive drug, may have anti-fibrotic
effects on human tissues. UNAGI's versatility extends to other diseases,
including COVID, demonstrating adaptability and confirming its broader
applicability in decoding complex cellular dynamics beyond idiopathic
pulmonary fibrosis, amplifying its use in the quest for therapeutic solutions
across diverse pathological landscapes.

Complex diseases emerge through the interaction of genetic and
environmental factors over time. The complexity of the interactions
betweenthese heterogeneous factorsamongindividuals and popula-
tions challenges the understanding of disease progression' . Treating
multifactorial diseases requires therapies that address multipleinter-
acting processes, but most therapies are developed using animal or
cell culture models that fail to capture the complexity and dynamics of
human disease*”. Novel approaches that capture disease dynamics and

cellular complexity are needed to facilitate the discovery and imple-
mentation of efficient therapeutic interventions for complex diseases.

Methodsbased onclinical data and electronic health records such
as Boolean networks®, Bayesian networks, support vector machines’
and decision trees® can chart disease continuum states’, but do not
address the molecular, cellular and genetic mechanisms underlying
disease progression. This limitation lies in the lack of high-resolution
genomic profiling'®, whichis crucial for understanding gene markers
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Fig.1|UNAGI overview. a, Phase 1: UNAGI uses a VAE-GAN paired with agraph
convolution layer. This set-up harnesses the complexities of single-cell data,
producing a‘Z latent space that bridges encoding and decoding with minimal
error.b, Phase 2: derived from the ‘Z embeddings, atemporal dynamics

graph emerges. Here the Leiden clustering method discerns cell populations,
subsequently UNAGI connects them across disease grades based on their
inherent similarity. ¢, Phase 3: the iDREM tool comes into play, spotlighting key
generegulators and genes that influence disease progression. These insights
are channelled into aniterative model training, honing in on specific gene

markers of the disease. d, With the model in place, UNAGl initiates in silico
perturbations, either directly tweaking drug target gene expressions (i) or
manipulating gene expressions via established gene interaction networks (ii) to
simulate drug treatmentimpact. e, UNAGI’s encoder processes the perturbed
cell population alongside its peers. The perturbation scores, derived from the
‘7 space embeddings generated by the UNAGI encoder, assist in identifying
potential drug candidates. These candidates are evaluated based on their ability
to transition diseased cells towards healthier states, such as those resembling
healthy control cells, thereby contributing to the treatment of the disease.

and gene networks, as well as for identifying therapeutics. Single-cell
RNA sequencing (scRNA-seq) stands at the frontier of potential solu-
tions, offering an opportunity to analyse cell populations at single-cell
resolution™"2, This technology can profile complex and heterogeneous
biological systems™", uncovering rare cell populations and aberrant

cell states that are pivotal to diseases”. Computational methods'***

suchasSeurat, SCANPY, scVI, GraphSCC, scGNN and scGGAN analyse
the noisy, high-dimensional and large-scale scRNA-seq data and can
even sketch cellular dynamics. However, scRNA-seq data is often a
snapshot of the cellular states at a specific time point and cannot
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account for the dynamic changes in cellular phenotypes, responses
or differentiation states during disease progression. When applied
to time-series sScCRNA-seq data, these methods tend to perceive the
dataasdiscrete snapshots, overlooking the continuity and temporal
progression inherent in time-series data. Computational methods
have been developed to address the challenges raised by time-series
single-cell transcriptome data. However, both conventional methods,
such as scdiff* and CSHMMs?*%, and deep-learning-based methods,
such as RVAgene?® and TDL?, are engineered for generic single-cell
data processing, inadvertently bypassing the specialized necessi-
ties tied to complex diseases. The preprocessing and normalization,
oftenrequired by noisy single-cell datafor complex diseases, can shift
the data into unconventional distributions, making them ill-suited
for the direct application of many existing models'>*°. In addition,
the absence of disease-specific optimization in these approaches
limits their understanding of the disease. When it comes to the step
of cell embedding learning, existing methods are devoid of the flex-
ibility to integrate disease-specific signatures. This limitation makes
them less effective at capturing the nuanced biological variations
associated with complex diseases. Finally, a salient gap in current
single-cell methodologies is the absence of unsupervised in silico
perturbation exploration capabilities. Although methods such as
scGPT*, GEARS* and scGen* can perform in silico perturbations,
they were not designed to process time-series data and often require
the experimental screening of cellular response to genetic perturba-
tion as supervision. Even if one were to adopt existing unsupervised
generative models, such as scVI, for this particular purpose, their
capacity tosimulate interventionsis hindered by inadequate incorpo-
ration of disease information. These existing unsupervised generative
methods are often not disease specific, treating all genes in a similar
manner across various diseases. Consequently, they often fail to iden-
tify critical genes associated with specific disease progression, which
hold potential for therapeutics. Furthermore, existing approaches,
whether supervised or unsupervised, are often generic and fail to
deliver disease-informed in silico drug screening. This shortcoming
arises fromthe lack of information exchange between cellembedding
learning and gene regulatory network inference underlying disease
progression. These methods usually cannot feedback the understand-
ing of disease progression (for example, critical genes and regulators
that modulate disease progression) toimprove cellular representation
(thatis, emphasizing critical genes more than others), and vice versa.
Consequently, thereis an unmet need for unsupervised methods that
canunderstand disease progression and adapt this comprehension to
virtually examine thousands of potential drugs and compounds using
single-cell disease data without relying on ground truth training data.
The ever-increasing availability of large-scale public drug databases,
such as the Connectivity Map (CMAP) database***, may provide the
missing link to the unsupervised single-cell in silico drug perturba-
tions. Coupled with this, given the vast pool of drug candidates and
theintricate cellular dynamics of diseases, aninteractive visualization
toolisimportant for efficiently probing potential drugs and priming
them for further experimental validation.

To bridge these gaps, here we introduce UNAGI, a comprehen-
sive unsupervised in silico cellular dynamics and drug screening
framework. UNAGI deciphers cellular dynamics from human disease
time-series single-cell data and facilitatesin silico drug perturbations
to earmark therapeutic targets and drugs potentially active against
complex human diseases. All outputs, from cellular dynamics todrug
perturbations, are rendered in an interactive visual format within
the UNAGI framework. Nestled within a deep-learning architecture
variational autoencoder-generative adversarial network (VAE-GAN),
UNAGI is tailored to manage diverse data distributions frequently
arising post-normalization. It also uses disease-informed cell embed-
dings, harnessing crucial gene markers derived from the disease data-
set. On achieving cell embeddings, UNAGI fabricates a graph that

chronologically links cell clusters across disease grades (reflecting
changing cellular states during disease progression and quantified
using patient-derived samples or cells), subsequently deducing the
gene regulatory network orchestrating these connections. UNAGI
canleverage time-series data, enabling the characterization of cellular
dynamics and capture of disease markers and gene regulators. Lastly,
the deep generative nature of the UNAGI framework facilitates an in
silicodrug perturbation module, simulating drugimpacts by manipu-
lating the latent space informed by real drug perturbation data from
the CMAP database. This allows for an empirical assessment of drug
efficacy based on cellular shifts towards healthier states following drug
treatment. The insilico perturbation module can similarly be used to
investigate therapeutic pathways, using an approach akin to the one
used indrug perturbation analysis.

We demonstrate UNAGI on acomprehensive single-nuclei RNA-seq
(snRNA-seq) idiopathic pulmonary fibrosis (IPF) dataset. IPF isa com-
plex lethal lung disease characterized by irreversible lung scarring,
leading to progressive declinein lung function and death®* %, Present
therapeutic options for IPF are markedly narrow; two Food and Drug
Administration (FDA)-approved drugs, pirfenidone® and nintedanib*’,
that slow lung function decline, but do not reverse fibrosis*. Despite
their approval, their specific impact on disease progression mecha-
nisms remains unclear*’"*2, Recent single-cell profiling studies'*"
highlighted the molecular and cellular diversity of the IPF lung, reveal-
ing extensive changes in lung-resident cells in IPF*>. We apply UNAGI
to the dataset containing single-nuclear sequencing of samples from
differentially affected lung regions. This approach aims tobetter under-
stand the changes that lung fibroblasts, key pathogenic cellsin fibrosis,
undergo as fibrosis progresses in the human lung and to potentially
identify agents that may slow down or reverse these changes. This analy-
sisdemonstrates UNAGI’s ability to generate compact low-dimensional
representations of the dynamic cellular transcriptomic shifts during
disease progression outperforming existing methods. In addition, we
conduct proteomics analysis of the same lungs, as well the ex vivo of
human pulmonary fibrosis using precision-cut lung slices (PCLS)***,
to experimentally confirm the results and predictions of UNAGI. Taken
together, our findings corroborate UNAGI’s capability not only in
decoding cellular dynamics and underpinning regulatory networks
butalsoin potentially accelerating drug development by spotlighting
potential therapeutic targets and drug candidates.

Results
Overview of UNAGI conceptual framework
UNAGI, a unified in silico cellular dynamics and drug screening
framework, isacomputational framework thatintegrates time-series
single-cell sequencing datawith deep-learning techniques to unravel
cellular dynamics and identify therapeutic interventions against multi-
faceted diseases. Thisisachieved using the following four components.
(1) UNAGI applies a VAE-GAN to capture cellular informationin a
reduced latent space (Fig. 1a). It processes single-cell data as continu-
ous, zero-inflated log-normal (ZILN) distributions (or other distribu-
tions that well fit the datain other application scenarios) because this
often better matches the distribution of single-cell data post rigor-
ous preprocessing and normalization (for example, in the IPF data
used in this study). With a cell-by-gene normalized counts matrix as
input, a cell graph convolution (GCN) layer is introduced to manage
the sparse and noisy nature of the data. In particular, the GCN layer
leverages the structured relationships between cells to mitigate the
dropout noise commonin single-cell data, enhancing the accuracy of
cellular representations. This data, further refined by a VAE, results
in lower-dimensional embeddings, with an adversarial discrimina-
tor ensuring the synthetic quality of these representations. (2) After
embedding, cell populations are identified using the Leiden clustering
approachand visualized with UMAP. A temporal dynamics graph span-
ning disease grades is then constructed by evaluating cell population
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Fig. 2| UNAGI identifies progressive heterogeneous cell populations across
tissue fibrosis grades in IPF. a, UMAP visualization: stromal cells across various
tissue fibrosis grades in IPF are depicted. Each point corresponds to a cell; the
first column categorizes them by cell type (for example, SMC, smooth muscle
cell; VE, vascular endothelial), and the second by Leiden cluster IDs. b, Gene

dot plots: dot plotsillustrate the key biomarkers for each identified cell type

across four grades of fibrosis involvement in IPF. In these plots, the size of each
circleindicates the proportion of cells expressing the gene, and the circle’s
colour reflects the level of normalized gene expression. ¢, Cell composition
chart: avisualization of the shifts in cell-type composition along with IPF disease
progression. Colours indicate the specific cell type. Notably, there is adiscernible
expansion of fibroblast cells as the disease progresses.

similarities during the disease progression, linking them based on
their likeness (Fig. 1b). Each trajectory within the graph then forms
the basis for deriving gene regulatory networks using the iDREM
tool* (Fig. 1c). (3) An iterative refinement process toggles between
the embedding and temporal cellular dynamics. During the embedding
phase, disease-associated genes and regulators (such as transcrip-
tion factors, cofactors and epigenetic modulators) identified from
the reconstructed temporal cellular dynamics are emphasized. This
ensures that cell representation learning consistently prioritizes these

key elementsrelated to disease progressionin every iteration. (4) Upon
reaching predefined stopping criteria, UNAGI then uses in silico per-
turbations to quantify the effectiveness of therapeutic interventions
(Fig. 1d). Using the trained VAE-GAN generative model, UNAGI simu-
lates cells under various drug treatments or pathway perturbations.
Each perturbation’simpactisscored and ranked based onits ability to
shift the diseased cells closer to a healthier cellular state (Fig. 1e). The
detailed model architecture and training parameters can be found in
Supplementary Note 1.
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Binning IPF samples into tissue fibrosis grades based on the
alveolar surface density

Atruelongitudinal profiling of the lung cells from the same patient with
different grades of tissue involvement in fibrosis isimpossible because
patients are never biopsied more than once. Cells or micro-dissected
regions from the same clinical stage can vary substantially in their
actual cellular states and grades of tissue involvement in fibrosis®’.
Thus, to investigate the cellular dynamics along the progression of
human IPF tissues, we used a widely adopted validated strategy that
analyses samples fromvariably affected regions of the IPF lung to assess
histological fibrosis progression**. The justification for this strat-
egy is that IPF does not progress randomly; rather, it stereotypically
advances from the lung periphery to the centre, and from the lower
lung zones to the upper lung zones*. This approach has been vali-
dated extensively**~**%, Therefore, cells from differentially affected
regions could be assumed to represent different fibrosis grades in
disease progression. To build the surrogate ‘longitudinal’ single-cell
data, here we used a Gaussian density estimator (Supplementary Note 2)
to classify all samples (and thus all cells) into different grades of tis-
sue involvement in fibrosis (tissue fibrosis grades), measured by
the alveolar surface density, a previously validated measure of lung
fibrosis**%* (Extended Data Fig.1a,b). The model learns the best num-
ber of tissue-fibrosis-grade bins in the IPF tissue and the associated
Gaussian parameters (mean and standard deviation) for each bin. We
analysed a total of 54 lung region samples from 19 patients, binning
theminto 4 tissue fibrosis grades based on the extent of tissue fibrosis
asreflected by surface density—none (control), mild, intermediate and
advanced—based onthe surface density. The fibrosis-related pathway
enrichmentscores and the expression changes of fibrotic markers such
as COLIAI®, LTBPI®, LTBP2®°, FGF2®, IGF1°* and SMAD3® (Extended Data
Fig.2) showaclear trend of increasing tissue fibrosis grades in IPF. This
four-tissue fibrosis grade binning has been previously validated***°,
Following the density estimation analysis, we assigned samples and
cellstothese four tissue fibrosis grades (Extended Data Fig. 1c). Specifi-
cally, 30 samples from 10 patients were categorized as none/control
(135,509 cells). Seven samples from 5 patients were classified as mild
(41,949 cells). Intermediate included 7 samples (31,512 cells) from 5
patients, while advanced comprised 10 samples (22,507 cells) from
6 patients (Extended Data Fig. 1d). As shown in Extended Data Fig. 1e,
thereisadiscernibleincreasein stromal cells starting frommild, hinting
atapossibleriseinfibroblasts fromthistissue fibrosis grade onwards.

UNAGI identifies varying stromal cell populations across IPF
progression

After applying UNAGI to the IPF snRNA-seq dataset and performing clus-
tering and visualization on the latent space, we explored the shifts and
changesin stromal cell populations using UNAGI. The average adjusted
Rand index (ARI) and normalized mutual information (NMI) were both
0.74 for all tissue fibrosis grades. UNAGI identified 11 distinct cell types
in controls, with more emerging in subsequent tissue fibrosis grades
(Fig. 2a), which we annotated based on the expression of canonical
cell markers (Fig. 2b and independent manual cell-type annotations
in Supplementary Fig. 1). UNAGI can capture cell subpopulations, such
as fibrotic fibroblasts and airway fibroblast cells, suggesting extended
fibrosis through the progression. UNAGI uncovered differences in cel-
lular heterogeneity: smooth muscle cells (SMC; marked by ZNF385D
and PRUNE2) and alveolar pericyte cells (characterized by ADARB2 and
LRRTM4) were predominantly homogeneous. By contrast, fibroblast cell
populations showed greater heterogeneity, withinboth alveolar (denoted
by ROBO2and SLIT2*) and adventitial fibroblasts. Fibroblast proportions
largely increase in IPF compared with controls—fromless than15% to more
than 40%—validating that fibroblast accumulation is a hallmark of IPF
progression® (Fig. 2c). The alveolar fibroblast cell population exhibits
the most substantial increase, while the fibrotic fibroblast archetype
appeared only in subsequent tissue fibrosis grades. The proportion of

vascular endothelial cells consistently decreases as IPF progresses. The
cellembeddings from IPF data reveal progressive shifts in cell popula-
tions across tissue fibrosis grades in IPF, which serve as afoundation for
constructingatemporaldynamicgraph depicting disease progression.

UNAGI reconstructs temporal dynamics and gene regulatory
networks in disease progression

UNAGI reconstructs the cellular dynamics associated with time-series
or disease progression data based on the cell embeddings learned by
the model. Within our analytical framework, a ‘track’ delineates a dis-
tinct trajectory within the reconstructed dynamics graph, marking
the sequential cellular state transitions corresponding to specific cell
clusters or populations. These tracks not only identify pathways but
also chronicle the journey of cellular progression and evolution. Within
stromal cells, we have discerned ten distinct progression tracks (Fig. 3a),
transitioning from the control to advanced tissue fibrosis grade. Because
of the established role of fibroblasts in pulmonary fibrosis****%’, we
focused on two tracks that delineate fibroblast progression in human
IPF. FibAlv-4 traces the cellular state shifts of alveolar fibroblast cells
during IPF progression, while FibAdv-17illustrates the cellular dynam-
ics of adventitial, airway and fibrotic fibroblasts. Of note, the fibroblast
tracks in the dynamics graph contain multiple branches, potentially
reflecting the multifaceted roles of fibroblast cells in fibrosis®.

The gene regulatory network of FibAlv-4, as reconstructed by
UNAGI, highlights the central role of gene regulators CTCF, RAD21,
SMC3 and especially fibrosis-promoting EP300°7°. This is further
supported by the genes in path A of the FibAlv-4 track, which include
recognized fibrosis biomarkers such as LTBP1 and LTBP2°°"" (Fig. 3b).
Pathways enriched in track FibAlv-4 include the following: in path A,
collagen and extracellular matrix (ECM) pathways’?; in path B, the
PI3K-Akt-mTOR signalling pathway and the focal adhesion pathway
(bothareimportant in lung fibrosis)’®>” (Fig. 3b); and in path C, SLIT/
Robosignalling pathway, less studied but with apotential rolein regula-
tion of fibrosis®*”. UNAGl also uncovered pathways that are implicated
in fibrosis but have not been firmly established as contributors to IPF
development, such asNCAMI1 interactions’”’%,

The FibAdv-17 track highlights the contribution of adventitial
fibroblasts to matrix remodelling. Enriched pathways encompass
general ECM-related pathways, including the ones of collagen forma-
tion, organization, trimerization and degradation, with some variation
between paths A and C (Fig. 3¢). The MET-activated PTK2 signalling
pathway”’, a substantial player in pulmonary fibrosis progression, is
also highlighted. The genes in path B, including KCNMAI®®, NPAS2®,
ITGAS®* and DIO2%, have all been associated with IPF. The depth and
precision of the reconstructed gene regulatory network are under-
scored by its ability to pinpoint not only pivotal gene regulators and
pathways but also the target genes that they regulate. These target
genes, especially those that exhibit differential expression across tis-
sue fibrosis grades, provide insights into the temporal dynamics of IPF
progression. Inthe context of the FibAlv-4 track, the method identifies
both COL3A1 and SERPINEI, which are induced by the transforming
growth factor-B (TGF) pathway®* and are hallmarks of the IPF lung®.
Moreover, it identifies less-studied fibrotic marker candidates such
as DCLK1, TENM3, TENM2, ADRA1A and GRIA1, which have also been
implicated in pulmonary fibrosis®**™ (Fig. 3d).

Taken together, UNAGI’s full-spectrum discovery of
well-established as well as less-known, but still associated, gene regu-
lators, pathways and their target genes underscores the method’s
robustness inunravelling the intricate molecular interplay underlying
the IPF progression.

UNAGI discovers dynamical and hierarchical static markers
across disease grades

Conventional single-cell analysis primarily identifies differentially
expressed markers between healthy and diseased cells. By contrast, we
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connecting two nodes represent gene regulators regulating expression changes.
Paths encompassing nodes from control to advanced depict a consistent set

of genes showing the same expression changes throughout IPF progression.

The enriched pathways associated with gene paths were also provided. ¢, The
temporal regulatory networks for the FibAdv-17 track. d, Line chart of expression
ofthe top dynamic gene candidates on the FibAlv-4 and FibAdv-17 tracks,

the top 10 most increasing and the top 10 most decreasing candidate marker
genes through the IPF progression. We applied FDR correctionin b using the
Benjamini-Hochberg (BH) procedure.

developed UNAGI to identify dynamic marker genes that offer alongi-
tudinal profile of cellular state changes throughout IPF progression.
It discerns dynamic markers for individual cell populations, tracing
gene expression shifts across disease grades. Allidentified candidate

biomarker genes from the temporal gene regulatory network for
each track are subjected to a permutation test to assess their statisti-
cal significance. This test involves randomly shuffling cells from the
track across various grades to establish abackground distribution for
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Fig. 4| UNAGI comprehensively discovers dynamical and hierarchical static
markers across various tissue fibrosis grades in IPF. a, Heat maps of top
increasing and decreasing temporal dynamic markers, z-score normalized. b,
Heat maps of dynamic gene markers (left) and protein expressions (right) from
the FibAlv-4 cluster, with line plots showing gene expression shifts during IPF
progression. ¢, Dendrogram visualizing control cell populations. Each node
signifies a cell-type-specific population. The fibroblast adventitial cluster is

accentuated. Using UNAGI, various hierarchical biomarkers are discernible
atdifferentlevels, either contrasting with other cell types or juxtaposing
subpopulations within the same cell type. d, Heat map of top 25 hierarchical
static markersin the fibroblast adventitial cluster at level 0, showing general
cell-type markers. e, Heat map of top 25 hierarchical markers in the fibroblast
adventitial cluster at level 4, compared with two fibroblast alveolar clusters,

showing cell subtype markers.

comparative analysis. Candidate genes that are deemed statistically
significant through this test are considered as dynamic markers, closely
associated with the track in the analysis (as detailed in the ‘Dynamic and
hierarchical static markers discovery’ section of Methods).

Figure 4a shows heat maps of the top 5 dynamic markers for each
track, both those that increase and decrease during disease progres-
sion (a comprehensive list is available in Supplementary Table 1). For
instance, in the FibAdv-17 track, markers such as LUZP2, ITGBL1 and

AOX1, previously reported as differentially expressed in IPF°°, are high-
lighted. Notably, NLGN1, GFRAI and AOXI are markers for adventitial
fibroblasts" and emerge as a top-decreasing temporal dynamic marker
inthistrack, suggestive of aloss of respective cell identity. The FibAlv-4
track, however, features markers such as DCLK1, TENM3,ADRAIA, GRIAI
and EPHA3, all of which have strong ties to lung fibrosis® "', Some
of them are also differentially expressed in all cells during disease
progression (Supplementary Fig. 2). It is important to mention that

Nature Biomedical Engineering | Volume 9 | December 2025 | 2155-2180

2161


http://www.nature.com/natbiomedeng

Article

https://doi.org/10.1038/s41551-025-01423-7

while our discussion primarily focused on monotonically increasing
and decreasing biomarkers, which are of main interest in our study,
our model can also identify biomarker genes with other patterns. An
example of this is genes that initially increase and then decrease, as
observedin path B of the FibAdv-17 track.

A common limitation of single-cell transcriptomic data is that it
only reflects transcript levels. To validate the markers discovered by
UNAGI, we used proteomics data, demonstrating gene-protein over-
laps and corroborating our transcript-level findings. We performed
proteomics of 30 matched tissue blocks from 10 IPF samples, with 3
samples each across different tissue fibrosis grades (based on the same
surface density criteria), and 10 control donors, with 1 sample each
(Supplementary Table 2). We identified 886 dynamic proteins, with 120
overlapping with our single-cell data (out 0of 2,484 genes). This overlap
issignificantand much higher than expected by chance (chi-square test
Pvalue =9.354 x1078). There are 40 out of 120 dynamic markers that
overlap with dynamic proteins. Hypergeometric testing onindividual
tracks revealed statistical significance for protein-coding genes of
dynamic proteins in four specific tracks (Supplementary Fig. 3).

A reassuring observation from our snRNA-seq and proteomics
data was again the combination of the identification of well-known
and validated molecules, with molecules that have been implicated
butnotdeeply studiedin fibrosis. The FibAlv-4 track notably contained
137 dynamic protein-encoding genes, with 14 of these genes produc-
ing dynamic proteins (Fig. 4b). Among these overlapping dynamic
markers, five relate to collagens (COL1A1, COL1A2, COL3Al, COL6A6
and COL14A1), confirming that progressive matrix remodelling is
intrinsically linked to the development of fibrosis®. Besides, many
other overlapping dynamic markers have been previously associated
with pulmonary fibrosis in computational analysis of bulk RNA-seq”
or mechanistic studies’®. Beyond these well-established IPF mark-
ers, UNAGI also uncovers markers such as ROBO1, ROBO2* and
GLI2”, which have not been firmly linked to IPF but warrant further
investigation.

UNAGI can identify both dynamic and static markers. While
dynamic markers offer insights into cellular state changes through-
out disease progression, static markers are crucial for distinguishing
between different cell types and subpopulations within a given tissue
fibrosis grade. Existing static biomarker discovery pipelines'®"” usu-
ally use a ‘one versus the rest’ strategy and may fail to distinguish the
difference between different subtypes.

UNAGI explores the hierarchies of marker genes that not only dis-
tinguish different cell populations but also capture the heterogeneity
among cell subpopulations. For instance, focusing on the FibAdv-17
cluster of controls, cell subpopulations are primarily divided into three
main groups: fibroblasts, vascular endothelial cells and lymphatic
endothelial cells (Fig. 4c and dendrograms of all four tissue fibrosis
grades are in Supplementary Fig. 4). The fibroblast adventitial popu-
lation spans five levelsin the dendrogram. Figure 4d shows the top 25
positive hierarchical static markers for fibroblast adventitial cells at
dendrogram level 0. These markers distinguish the fibroblast adven-
titial cluster fromall other clusters. UNAGI's results are consistent with
the dendrogram structure, indicating the close relationship between
fibroblast adventitial and fibroblast alveolar clusters. Notably, UNAGI
identified key markers such as /GF1 and collagen-encoded genes such
as COL24A1and COL7A1, emphasizing the role of elevated interstitial
collagen levels in IPF’%, Other markers such as ANGPTL4’° and WTI
further demonstrate the method’s precision in identifying relevant
genes' (top 25 level O positive and negative markers are detailed in
Supplementary Fig. 5).

Figure 4e presents the top 25 positive hierarchical static markers
for the fibroblast adventitial cluster at level 4 (subtype level). While
there are some markers overlapped with level 0 markers, level 4 intro-
duces unique markers potentially for subtypes such as NLGNI and
MFAPS, and they are cell-type markers for adventitial fibroblasts'1*"1%?

(top 25level 4 positive and negative markers are detailed in Supplemen-
taryFig. 6). UNAGI's ability toidentify both temporal dynamic markers
and hierarchical static markers offers a dual approach for detailed
profiling of the disease frombothintra-disease grade and longitudinal
(inter-disease grade) perspectives, enhancing our understanding of
its complexities.

UNAGI identifies potential therapeutic pathways for IPF
treatments

Inthe preceding sections, we described how UNAGI enhances our com-
prehension of biomarkers and cellular dynamics in the progression of
IPF. Building upon this foundational understanding, we now shift our
focus to the therapeutic frontiers opened by UNAGI. This involves
leveraging its in silico perturbation capabilities, which are rooted in
diseased-informed cell embeddings and the temporal dynamics of the
disease. This approach facilitates the identification of potential thera-
peutic targets and pathways, which may contribute to advancements
in IPF treatment. Detailed results of these pathway perturbations are
systematically presented in Supplementary Table 3.

UNAGI provides afull spectrum of pathway perturbation results,
ranging from well-established pathways to unexplored ones. Many
of the top pathways predicted by UNAGI (Fig. 5a) align with known
IPF-centric pathways, including pathways associated with TGF5+10371%
and collagen formation”®'®, Among the top 10 identified therapeutic
pathways, UNAGI identifies pathways whose role in IPF is relatively
less studied such as the Netrin-1 signalling pathway (score = 0.6548,
false discovery rate (FDR) = 3.4698 x 107), which is indicated to be
mechanistically important in pulmonary fibrosis®”'°; signalling by
ROBO receptors (score = 0.5890, FDR =1.1028 x 10™)**1; and GPCR
signalling pathways, which are associated with G proteins, known to
promote fibrosis, and have also generated interest as targets for IPF
interventions'®®, Other less-studied pathwaysin IPF such as the calcium
signalling pathway may hold important promise in fibrosis'®’. UNAGI
also predicts unexplored pathways in IPF, including ion homeostasis
and theinactivation of CDC42 and RAC1. Although these pathways were
not previously linked to IPF, they may play a substantial role in IPF pro-
gression. Forinstance, CDC42 and RAC1, as members of the Rho family
of small GTPases, areinvolvedin fibroblast activation, suggesting that
inhibiting these pathways could help mitigate fibrosis"*™".

Figure 5b shows the gene expression of the target genes of Netrin-1
pathways after perturbation. As can be seenin Fig. 5c, in silico pathway
perturbations shift cellular states towards healthier conditions. Per-
turbed cell embeddings generated by the graph VAE-GAN model are
visualized in a principal component analysis (PCA) plot, showing the
effects of repressing the Netrin-1 signalling pathway across tissue
fibrosis grades. In the mild fibrosis perturbation, the perturbed cell
population (P,) is closer to the control (C) than to the mild cells (S;) and
more distant from advanced cells (S;). The similarity in the embedding
spaceisindicated by the thickness and length of connectionlines, with
athickerand shorterline (L¢p) representing higher similarity between
control (C) and P,. Overall, shifting the pathway gene expression to
control drives perturbed cellular states closer to controls and away
from progressive tissue fibrosis grades (Fig. 5d). These results visually
demonstrate the ability of UNAGI to simulate and potentially predict
whether a specific pathway of gene set perturbations can improve
cellular health—or reduce fibrosis.

UNAGI screens potential drug candidates for IPF treatments

UNAGI’sinsilico drug perturbation approach, akin toits pathway per-
turbation, leverages and integrates the CMAP dataset. Comprehen-
sive results of all drug perturbations are detailed in Supplementary
Table4.UNAGI also offers a full spectrum of drug candidate predictions,
fromknown IPF treatments to compounds with unexplored potential.
UNAGTI’s unsupervised in silico perturbation identified nintedanib
(score =0.1102, FDR = 0.0111), which is an FDA-approved drug for IPF,
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Fig. 5| UNAGI identifies potential therapeutic pathways and potent drugs for
IPF treatments. a, Bar chart of the track FibAlv-4 pathway perturbation results.
The highlighted pathways are also identified in the reconstructed gene
regulatory network of the track. b, Split-violin plot of the gene expression
differences for the top 10 most changing genes of in silico Netrin-1signalling
pathway perturbation in mild of the FibAlv-4 track. ¢, PCA plots of latent

space Zof insilico Netrin-1signalling pathway perturbation effects and dots
represent cells from distinct tissue fibrosis grades. Lines connected to two
nodes are the PAGA connectivity score between two clusters, where the width
ofalineis proportional to the strength of the score, and the length of the line
canrepresent the distance between the UNAGI embeddings of the two connected
clusters (for example, line connecting control and perturbed mild (Lcp)).

d, PCA representation highlighting the impact of sanitary perturbation, which
involves reversing the gene expression at mild back to the patterns observed in
the control. e, Bar chart of the top overall drug perturbation results. f, Split-
violin plot of gene expressions for the top 10 changing targets of nintedanib in
the gene interaction network both before and after perturbation in mild of the
FibAlv-4 track. g, Distribution patterns for various drug/compound
perturbations. The x-axis represents the perturbation score, while the y-axis
portrays the density of the fitted Gaussian distribution for each specific setting.
We applied FDR correctionina and e using the BH procedure. Asterisks denote
statistical significance as follows: *0.01 < FDR < 0.05; **1x10™*<FDR<1x1073;
#EDR<1x107.
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Fig. 6 | The predictions of UNAGI align with human PCLS drug validations.

a, UMAP of PCLS data, each dot representing an individual cell. b, UMAP
highlighting similarity between real and in silico treatments of nifedipine and
nintedanib. ¢, Violin plots showing fibrotic cells shift towards healthy control
cells after nintedanib and nifedipine treatments. For example, D, (fibrosis,
nifedipine) is the distance between fibrosis cells and fibrosis cells after nifedipine
treatment. The number of cells n = 6,318, 9,346, 3,586 and 10,288 from left to
right. The Pvalue s calculated using one-sided Student’s t-test. d, Violin plots
demonstrate strong alignment between in silico and real-world drug treatments.
The number of cellsn=12,942, 9,836, 7,182 and 9,836 from left to right. The
Pvalueis calculated using the two-sided Kolmogorov-Smirnov test. NS, not
statistically significant. e, The RRHO plots comparing gene expression changes
ininsilico perturbations and actual treatments for nifedipine and nintedanib,

Nifedipine

showing high similarity. f, Comparing the expression of the top 100 differential
genes of real treatments (nintedanib or nifedipine versusfibrosis) to in silico
perturbation results. The box plot visualizes the top 25 differential genes for
each treatment. The top 100 differential genes are used to calculate the adjusted
R?metric and generate R*plots. g, Comparing ECM organization target gene
expressions from real treatments and in silico perturbations. The box plots
visualize the top 15 differentially expressed ECM genes and use all ECM target
genes to calculate the adjusted R* metric. The number of cells n =2,264, 4,918,
8,024 and 4,918 for nintedanib, nintedanib_in silico, nifedipine and nifedipine_
insilicoinfand g. The Pvalues of R? (coefficient of determination) infand g were
calculated using the one-sided F-test. Theboxesin ¢, d, fand g represent the
interquartile ranges (IQRs), and the solid lines indicate the medians. The whiskers
extend to points within 1.51QRs of the lower and upper quartiles.

and ifenprodil' (score = 0.2441, FDR = 2.275 x107%°), an FDA orphan
drug for IPF that has completed phase 2 trials (clinicalTrials.gov ID
NCTO04318704). These alignments with known treatments confirm
UNAGI'’s ability in identifying clinically relevant compounds. Some
top predicted drug candidates that are not yet linked to IPF but have
potential for further investigation are shown in Fig. 5e and are high-
lighted below.

Apicidin, with a score of 0.5021 and an FDR =4.551 x107'%), is a
histone deacetylase (HDAC) inhibitor used in preclinical research.
Previous studies have suggested that HDACs may be beneficial in pul-
monary fibrosis, but their study has not progressed beyond the preclini-
cal stage potentially because of safety concerns™", Another similar
HDAC inhibitor, belinostat, was also picked up by UNAGI specifically,
with no mention with regard to IPF so far. Nifedipine, scoring 0.3834

Nature Biomedical Engineering | Volume 9 | December 2025 | 2155-2180

2164


http://www.nature.com/natbiomedeng
https://clinicaltrials.gov/ct2/show/NCT04318704

Article

https://doi.org/10.1038/s41551-025-01423-7

with an FDR =1.152 x 107, is a calcium channel blocker widely used
with a good safety profile. Despite some early encouraging results
suggesting that calcium signalling inhibition in murine fibroblasts
may be anti-fibrotic', nifedipine has not been studied in humans. Cilo-
milast, a phosphodiesterase 4 (PDE4) inhibitor, has a score of 0.3082
and an FDR =4.407 x 107, It has demonstrated potential in attenuat-
ing pulmonary fibrosis in mice"®. Niguldipine, scoring 0.3842 and an
FDR =6.160 x 107, is a calcium channel blocker and an al-adrenergic
receptor antagonist, showing anti-fibrotic effects in the lung™. The
compound 8-bromo-cGMP, whichimpacts PRKGI, has ascore of 0.3099
andanFDR =1.562 x 107, and is associated with the TGF pathwaysin
thefibrosis process™. Other drugs, including ibudilast (score = 0.3053,
FDR =2.465x107**) and topiramate (score = 0.3203, FDR = 2.411 x 107),
have been identified, with the former potentially having anti-fibrotic
effects similar to other PDE4 inhibitors"®, and the latter regulating
GRIA1, whichis associated with lung fibrotic diseases®*"". Of note, asim-
ilar selective PDE4B inhibitor, nerandomilast, is currently evaluatedin
aphase3trialin patients with IPF (clinicalTrials.govID NCT05321069).
Myricitrin (score = 0.2045, FDR = 2.590 x 107®) has been shown to
exhibit anti-fibrotic activity in certain conditions°, while regorafenib
(score=0.1407, FDR = 2.653 x 107) attenuates fibrosis by inhibiting
the TGFp pathway'?. Furthermore, UNAGI also identified compounds
with yet no established connection to IPF, such as eliprodil, an NMDA
receptor antagonist'??, worth further exploration.

Thetarget geneintervention of nintedanib is shownin Fig. 5f. The
corresponding perturbationresults, visualized in Supplementary Fig. 7
acrosstissue fibrosis grades (mild-advanced), emphasize the potential
ofthese drugsto shift cell populations towards healthier tissue fibrosis
grades. The consistently higher PAGA connectivity scores between
perturbed cell populations and healthier cellular tissue fibrosis grades
indicatethat the perturbed cell populations are more akin to healthier
cells. Overall, UNAGI’s efficacious drug candidates (those that received
significant FDR values) consistently surpass the therapeutic scores of
random perturbations (Fig. 5g). These results were congruent with the
outcomes from sanity drug perturbations (see Supplementary Note 3
for sanity drug perturbation method), during which we intentionally
manipulated target gene expressions to the adjacent, healthier tissue
fibrosis grades.

Experimental validation of in silico drug perturbations via
PCLS

To experimentally validate UNAGI predictions, we utilized a transla-
tional ex vivo fibrosis model—in which human PCLS are exposed to
a fibrotic cocktail'”’. We tested the model predictions for nifedipine
and nintedanib. PCLS were treated for 5 days with a control cocktail
(CC) including all vehicles or a pro-fibrotic cocktail (FC) previously
described'**'**, Nifedipine and nintedanib of vehicle control treatment
started on day 3 until day 5.

As read-out, we performed snRNA-seq. When assessed based on
experimental conditions, cells under both nifedipine and nintedanib
treatments exhibit similar latent representations on the UMAP. This
suggests their parallel rolesininhibiting fibroblast activation (Fig. 6a).
Utilizing UNAGI'’s perturbation module, nintedanib and nifedipine in
silico perturbed cells gravitate towards the nintedanib-treated popu-
lation, demonstrating potential therapeutic effects (Fig. 6b). Pairwise
Euclidean distances between latent embeddings indicate that both
treatments effectively steer the cellular state of fibrosis cells toward
a healthier baseline (Fig. 6¢) and the in silico treatments behave as
real treatments (Fig. 6d). This observation is evidenced by the Mann-
Whitney U test confirming the analogous anti-fibrotic properties of
both treatments. The rank-rank hypergeometric overlap (RRHO)
confirms that the markers identified in silico closely align with the
biomarkers observed inthe PCLS experiments (Fig. 6¢). The adjusted R?
scores for nintedanibinsilico (0.898, P=1.222 x 10 *) and nifedipinein
silico (0.889, P=1.665 x 107*%) with respect to the top 100 differentially

expressed genes (DEGs) in actual treatment versus fibrosis, as well
as the top 25 markers in side-by-side comparisons (Fig. 6f; top 100
DEGs comparisons are detailed in Supplementary Fig. 8), demonstrate
the consistency of gene expression patterns between in silico and
real treatment markers. Known IPF markers such as /L33, ADAM12"
and CXCL8"” exhibit similar changes in gene expression in both real
treatment experiments and in silico predictions. The R* scores and
side-by-side comparisons of real treatments and in silico gene expres-
sion of the ECM organization pathway further validate the capability
of the UNAGI model to accurately simulate in silico perturbations on
IPF-related targets (Fig. 6g; all ECM organization pathway genes com-
parisons are listed in Supplementary Fig. 9). The alignment between
insilico drug perturbations and actual drug treatments on the PCLS
demonstrates the reliability of UNAGI.

UNAGI unveils COVID-19 cellular dynamics and therapeutic
opportunities

To demonstrate the expansive applicability of UNAGI to various com-
plex diseases, we studied the temporal dynamics of coronavirus disease
2019 (COVID-19). We used a subset of a COVID-19 dataset'® consist-
ing of 246,948 peripheral blood mononuclear cells (PBMCs) from 47
age-matched patients with various severities of COVID-19. We catego-
rized them into four COVID-19 stages based on the disease severity of
patients: healthy (control, or stage 0), asymptomatic or mild (stage 1),
moderate (stage 2) and severe or critical (stage 3). We independently
trained the UNAGI framework from scratch on the COVID-19 dataset to
reveal temporal dynamicsin COVID-19 disease progression and screen
potential therapeutic targets.

After learning the latent cell representations (Extended Data
Fig.3), UNAGlidentified 14 unique cell populations at stage 2 (Fig. 7a).
This spotlights potential biological associations, such as those between
platelets and T cells, which align with previous research'?®, Here UNAGI
can elucidate cell-type markers for cell populations, such as MS4A1
and CD79Ain B cells, and underscore differential expressions, notably
CD8A and CD8B, in CD8 T cells—findings that harmonize with manual
annotations (Fig. 7b).

Focusingonthe cellular dynamics across the trajectory of COVID-
19, UNAGI identified seven distinctive tracks reflecting the evolving
cellular interplay across COVID-19 severity levels (Fig. 7c). Figure 7d
adds detail by highlighting key genes involved in the progression of
the COVID-19 in CD16" monocytes, such as BHLHE40, which finds an
upregulation in moderate patients'”’, and EGRI, recognized for influ-
encingsevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
replicationand antiviral responses’. Notably, genes such as GRN**' and
PLACS"*emerge as upregulated in COVID-19. Gene enrichment analyses
further discern crucial pathways tied to the disease such as interferon
signalling and immune system pathways''*. Transitioning to predic-
tive capabilities, UNAGlidentified potential therapeutic pathways such
as the RHO GTPases Activate NADPH Oxidases pathway, which aligns
with modern findings emphasizingits substantial role in COVID-197*""
(Fig. 7e). A deep dive into pathways related to Toll-like receptors and
interferon responses®® further broadens the therapeutic landscape.

Figure 7f shows the insilico drug perturbation results predicted by
UNAGI. Aloxistatin stands out, achieving the highest drug perturbation
scores and drawing attention owing to its potential against SARS-CoV-2
proteases'. In addition, didanosine, notable for its efficacy against
COVID-19 polymerase and exonuclease'*®, and ponatinib are recog-
nized as potent COVID-19 drugs by other machine learning methods™,
aligning with several other recent published studies™’ .

UNAGI enhances cell embedding and disease dynamics
understanding

To demonstrate UNAGI's advantages over existing methods in under-
standing the dynamics of diseases, we benchmarked it against estab-
lished methods, including scVI'?, GraphSCC??, scGEN*’, scGGAN?,
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Fig. 7| UNAGI inssilico analysis unveils COVID-19 cellular dynamics and
therapeutic opportunities. a, UMAP display of stage 2 COVID-19 data with
eachdot symbolizing anindividual cell. Cells are colour-coded based on their
respective cell types. b, Dot plotillustrating the expression levels of canonical
cell-type markers present within the stage 2 COVID-19 dataset. ¢, Dynamic
graphs representing cellular dynamics underlying the COVID-19 progression.
Within these graphs, each node corresponds to a cell cluster, and the connecting
edges signify the relationships between these nodes (shift of the cell population
along with COVID-19 progression). d, Depiction of the reconstructed gene
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regulatory network for track 12-CD16. Prominent gene regulators, genes and
pathways discerned from the enrichment analysis are enumerated. e, Bar chart
detailing the principal pathway perturbation outcomes. Pathways highlighted
have literature support, indicating their potential as therapeutic targets against
COVID-19.f, Bar chart outlining the top 10 drug perturbation results. Drugs that
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their candidacy for treating COVID-19. We applied FDR correction in d using the
BH procedure. Asterisks denote statistical significance as follows: *0.01<FDR <
0.05;**1x10*<FDR<1x1073%;****FDR <1x10™

scGPT", Geneformer'*, scGNN?, Seurat'® and SCANPY", on the IPF
dataset and scRNA COVID-19 PBMC data'?®, To present acomprehensive
benchmarking, we conducted evaluations on various tasks: (1) generat-
ing cellembeddings, (2) computing efficiency, (3) identifying disease
markers and (4) identifying disease-associated pathways. Supplemen-
tary Table 5 summarizes the functionality and ranks performance of
these benchmarked methods across key tasks.

Cell embedding benchmarking. To evaluate the capability to gener-
ate disease-informed cell embeddings, we compared the quality of
embeddings generated by different methods through various bio-
logical conservation metrics suggested by Luecken et al.'**. UNAGI
consistently outperformed existing single-cell analysis methods on the
IPF dataset over various benchmarks, except for the silhouette score
(Fig. 8a-j). Although scGGAN achieved the highest silhouette score, it
fellshort onmetrics related to cell-type specificity, illustrating that its

embeddings do not adequately capture the underlying biological vari-
ation (Supplementary Fig.10). UNAGI outperformed other methodsin
generating cell-type distinct embeddings. This was evidenced by the
highest cell-type-associated metrics, including a 5.15% higher ARI, a
4.30% higher cell-type average silhouette width (ASW) and a 2.97%
higher NMI, compared with the second-best methods.scGNN canonly
work ondownsampled datasets because ofits memory-hungry features
(Extended Data Fig. 4a) and our experiments comparing UNAGI and
scGNN with the same 25% downsampled dataset setting suggested that
scGNN’sinadequate performance was not abias caused by the reduced
data size (Supplementary Fig. 11). scGPT and Geneformer pretrained
on large-scale single-cell dataset and fine-tuned on the IPF dataset
can achieve the joint second-best overall performance. Our compre-
hensive benchmarking also demonstrates that UNAGI outperforms
these foundation models in both zero-shot and fine-tuning settings
(Supplementary Fig.12). The results of SCANPY using the standardized
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Fig. 8| Benchmarking UNAGI against existing methods. a, ARL. b, NMI.
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f, Graph cLISI score. g, SCIB overall bio-conservation score. h, Silhouette score.
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the benchmarking methods are UNAGI, GraphSCC, scGEN, scGGAN, scGPT,
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rigorous preprocessing. For the meaning of each score, see the ‘Benchmarking’
sectionin Methods. k, Disease marker identification: the box plotsillustrate
the Pvalue resulting from the hypergeometric test of the overlap between
proteomics markers and identified disease markers. I, Disease-associated
pathway identification: bar plots of -log,,(FDR) significance for each pathway.
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silico drug screening performance, showing true-positive rate versus false-
positive rate. n, PRC curves for precision and recall inin silico drug screening.
0, Box plots of Pearson correlations between predicted gene expression
changes and ex vivo experimental changes for top 100 DEGs (treatment marker
genes) after in silico perturbation for nifedipine and nintedanib treatments.
Insilico perturbations were conducted on the top 10 treatment marker genes,
respectively. The experiments in o run with different seeds (n = 5). The boxes
ina-kand orepresent the IQRs, and the solid lines indicate the medians. The
whiskers extend to points within 1.5 IQRs of the lower and upper quartiles. The
error barsinlrepresents.d. and data are presented as mean values + s.d. We
applied the one-sided hypergeometry test and FDR correction using the BH
procedureinkandl.

single-cell analysis pipeline on raw data without preprocessing (w.o.
preprocessing) strength the need to perform rigorous data cleaning
and normalization for analysing the complex single-cell data. The
UMAP visualizations of the benchmarking methods applied to the IPF
dataset are presented in Supplementary Fig.13. However, the COVID-19
dataisless noisy and complex, and better fits a zero-inflated negative
binomial (ZINB) distribution. In general, UNAGI achieved similar or
better performance compared with existing methods (Extended Data
Fig.5). Besides achieving high performancein ARI, NMland label scores
like other methods, it surpasses them by achieving a 2.75% higher
cell-type ASW and a 2.81% higher isolated label silhouette score. The

benchmarking results of embedding quality highlighted that UNAGI
can generate more disease-informed cell embeddings than existing
methods. Besides the high performance, UNAGI is also computation
efficient and strikes a balance between memory demands and execu-
tion time in large-scale single-cell datasets compared with bench-
marked methods (Extended Data Fig. 4a,b).

Disease marker and disease-associated pathway identification
benchmarking. Beyond better cell embeddings, UNAGI also outper-
forms benchmarking methodsinidentifying disease-associated mark-
ersand pathways. Thisis attributed to the learned disease-informative
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embeddings and the iterative training strategy, which emphasizes
disease markers during optimization. Figure 8k shows that UNAGI’s
disease markers have stronger agreement with proteomics markersin
thefibroblast cells. Besides the diminished embedding quality relative
to UNAGI, the existing techniques were not equipped with iterative
training and often not consider the longitudinal disease progression
information during the optimization process. Thisis due to the insuf-
ficient information exchange between cell embedding learning and
gene regulatory network inference. Consequently, their comprehen-
sion of the disease’s advancement cannot match that of UNAGI. In
addition, through benchmarking UNAGI with existing methods on
disease-associated pathway discovery tasks, we demonstrated that
UNAGI canbetter reveal the biological process underlying the develop-
ment of disease. Similar to the dynamic marker discovery, UNAGI con-
sistently outperforms existing methods by achieving more significant
FDR for the detection of disease-associated pathways (Fig. 81). Notably,
UNAGI stands out for its ability to detect the lung fibrosis pathway
from the alveolar fibroblast track, something that other methods
struggle with.

UNAGI outperforms existing methods in unsupervised in silico
drug perturbation

The UNAGI framework’s nonlinear nature and its capability to under-
stand the temporal gene regulatory networks (GRNs) of the disease
progression help it surpass other methods in performing the in silico
drug perturbation. We conducted benchmarking experimentson (1) in
silicodrugscreening and (2) post-treatment gene expression changes
prediction tasks to show that UNAGI outperforms existing methodsin
the unsupervised in silico drug perturbation.

In silico drug screening benchmarking. We benchmarked UNAGI
against scGPT, Geneformer, scVl and scGEN, and directly calculated
theshiftsinthe gene space (denoted as ‘Original’) ontheinsilico drug
screening task using simulation data. These benchmarked methods
do not natively support unsupervised in silico drug screening, so we
integrated theminto the UNAGI framework to enable this functional-
ity and facilitate a comparative analysis. To conduct the simulation
study, we created positive and negative simulation datasets using 25
drugs with the lowest target gene expressions. This involved shuffling
the gene expression of individual tissue fibrosis grades and adding
signals or random noise to the targets of one simulated drugin fibro-
blast cells. We then performed insilico perturbation of theimplanted
drugs using pre-trained models on the simulation datasets to obtain
perturbed cell embeddings and calculate the perturbation score.
The FDR-BH (Benjamini-Hochberg) of the perturbation score was
calculated against the distribution of random perturbation scores to
determine whether the models could identify the implanted drugs
(see‘Insilico drug screening simulation’in Methods). UNAGI obtained
anareaunder the receiver operating characteristic curve (AUROC) of
0.945 and an area under the precision-recall curve (AUPRC) of 0.937,
3.6% and 6.7% higher than the second-best method (Fig. 8m,n). The
performance of linear methods ‘Original’ (AUROC of 0.487 and AUPRC
of 0.504) is close to random and far below UNAGI’s performance.
The poor performance of linear methods is caused by overlooking
the downstream effects of GRNs and lacking understanding of criti-
cal genes underlying disease progression. Nonlinear methods scVI
(AUROC, 0.774; AUPRC, 0.704) and scGEN (AUROC, 0.854; AUPRC,
0.845) performed muchbetter than linear methods; they still fall short
of matching UNAGI'’s performance owing to a lack of understanding
of the disease progression mechanisms. We further benchmarked
UNAGI with single-cell foundation models, scGPT and Geneformer,
ininsilico drug screening tasks using both zero-shot and fine-tuned
settings. We found that fine-tuning on the IPF datasetindeed improved
their performance compared with zero-shot settings (Supplemen-
tary Fig. 14). However, UNAGI still achieved higher performance in

the in silico drug screening task (AUROC of 0.945, AUPRC of 0.937)
compared with fine-tuned scGPT (AUROC 0.909, AUPRC 0.870) and
Geneformer (AUROC 0.920, AUPRC 0.862) on the IPF dataset. The
improved performance of UNAGI can be attributed to its nonlinear
nature to simulate the downstream effects of GRN in the perturbation
and theiterative training strategy to improve the power of nonlinear
layers by providing a better understanding of the GRN underlying the
disease progression mechanism.

In silico post-treatment prediction benchmarking. Moreover, we
conducted a benchmark of UNAGI against scGPT, scGEN and scVI
for predicting gene expression changes after treatments using the
snRNA-seq PCLS dataset (Fig. 80). We also directly modified the gene
expression of the top treatment markers (‘Original’) as the baseline
to evaluate UNAGI. We trained UNAGI, scVI and scGEN on the control
and fibrosis cells, and perturbed the top 10 nifedipine and nintedanib
treatment markers (that is, DEGs after ex vivo treatments) to predict
the outcome of ex vivo treatments. To predict the post-treatment gene
expression, the decoder of UNAGI can map the perturbed cell embed-
dings to the gene space. Note that the above three methods (UNAGI,
scVland scGEN) were run inan unsupervised manner to predict gene
expression changes after treatment and were not exposed to the
actual post-treatment single-cell data from the ex vivo experiments.
By contrast, the fine-tuning for the scGPT method was conducted with
supervision using the fibrosis cells and drug-treated cells because
training its perturbation module requires cells before and after inter-
vention. We split the datainto training and testing sets and fine-tuned
the method on the training set. To predict the post-treatment gene
expression, we applied the fine-tuned scGPT model on the testing set
and perturbed the top 10 nintedanib or nifedipine treatment markers.
Directly modifying the gene expression of the top 10 disease mark-
ers (‘Original’) does not enable accurate prediction of perturbation
outcomes. Compared with ‘Original’, UNAGI’s Pearson correlation
improves 34.4% in the nifedipine treatment prediction and 60.3% in
the nintedanib treatment prediction. Compared with scVland scGEN,
UNAGI can more accurately predict the outcome of the top 100 ex vivo
treatment markers. UNAGI achieved 6.99% and 9.03% improvementsin
the Pearson correlation of nifedipine and nintedanib treatment marker
predictions compared with other unsupervised methods, respec-
tively. Furthermore, UNAGI even outperformed scGPT, the supervised
perturbation prediction method, with amargin of2.29% and 11.7% in
these two treatments, respectively. The improved performance can
beattributed to the gene-weight mechanismand the iterative training
strategy. Supplementary Fig.15ashows that treatment markers were
assigned higher weights in UNAGI, while they were treated equally
with other lessimportant genes in other benchmarked methods. For
instance, the median gene weight of the top 100 nifedipine treatment
markers is the 81st percentile of all genes’ weights in UNAGI. The
pathway enrichedin the top 100 weighted genesis closely associated
with the development of lung fibrosis, including the TGFf3 signalling
pathway, elastic fibre formation and ECM organization (Supplemen-
tary Fig.15b). Through the analysis of the bio-conservation of highly
weighted genes, we demonstrated UNAGI'’s ability in understanding
the temporal GRN of disease progression mechanisms. As a result,
UNAGI enables more precise predictions of post-treatment gene
expression.

Evaluation of the contribution of UNAGI’s modules through
ablations

We performed a comprehensive analysis using IPF (Extended Data
Fig. 6) and COVID-19 (Extended Data Fig. 7) datasets to investigate
the impact of individual components on the performance of UNAGI.
The ablation study was conducted in the following three aspects: (1)
embedding quality, (2) cell generation and (3) disease marker and
disease-associated pathway identification.
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Embedding quality. In terms of the embedding quality, the largest
contribution comes from the GCN layers (Extended Data Figs. 6a—jand
7a-j). GCN consistently improves the performance by at least 3.69%
across variousmetrics, including ARI, NMI, label score, silhouette score,
cell-type ASW and SCIB (single-cell integration benchmarking) overall
bio-conservationscore'*. Compared with using ZINB distribution, the
common practice, the results show that the ZILN distribution better
fits the IPF dataset, thus leading to better embeddings. In addition
to UNAGI, we demonstrated that ZILN distribution can enhance the
performance of other methods, such as scVI (Supplementary Fig.16).
The iterative training strategy can also further improve the quality of
IPF cellsembedding evidenced by achieving higher AR, isolated label
Flscoreandisolated label ASW thandirect trainingto the convergence.
The UMAP visualization of the ablation studies on the IPF dataset is
showninSupplementary Fig.17.

Cell generation. While the GAN component did not necessarily
improve embedding quality (Extended Data Figs. 6a-j and 7a-j),
it played a crucial role in guiding the VAE to generate high-quality
cells. This contribution is evident in the improved Pearson correla-
tionbetween the PCA embeddings of the original and generated cells
when using the GAN module compared with UNAGIwithout (w.0.) GAN,
whichincreased by 3.80%in the IPF dataset and 14.57% in the COVID-19
dataset (Extended Data Figs. 6k and 7k).

Disease marker and disease-associated pathway identification.
Beyond the cell embeddings and cell generation, we conducted abla-
tionstudies to evaluate theimpact of individual components on disease
progression understanding through disease marker discovery and
disease-associated pathway identification. The ablation studies on
dynamic marker discovery and fibrosis-associated pathway discovery
revealed that iterative training is the key factor in understanding the
disease (Extended Data Fig. 61,m). Apart from adopting the iterative
training strategy, all ablation models achieved similar performance
in the dynamic marker discovery. In the disease-associated pathway
identification tasks, the GCN layersimprove the model’s performance
byincorporating neighbouring cellinformationinto biological activi-
ties that failed to be captured in the sequencing process.

Discussion

In this paper, we describe UNAGI, a computational tool for modelling
the temporal cellular dynamics of the complex disease progression.
UNAGI leverages the graph VAE-GAN model to handle high-dimensional
single-cell data and extractlatent embeddings, crucial for formulating
progression tracks and reconstructing temporal GRNs. Applied to IPF,
UNAGI enables high-resolution modelling of cellular trajectories, key
gene regulators and genes associated with progressive lung fibrosis.
Throughiterative training, it focuses on IPF-specific features, simulating
and evaluating perturbations on potential target genes and drugs. UNAGI
provides an in-depth understanding of cellular dynamics and GRNSs,
identifying potential therapeutic pathways and drugs for IPF, showcas-
ing its potential in disease modelling and therapeutic development.

UNAGI differentiates itself from other methods owing toits ability
to comprehensively model disease progression and identify potential
therapeutictargets throughinsilico perturbations. UNAGI offers asuite
of characteristics that distinguish it in the domain of disease compre-
hension and therapeutic discovery. UNAGI can create disease-focused
cell embeddings and generate cells using a deep generative neural
network. This precision enhances cell clustering and identification,
surpassing existing methods focused primarily on generic cell repre-
sentation learning.

UNAGI unravels the intricate cellular dynamics associated with
disease progression using the GRN reconstruction module. By gen-
erating cell embeddings, UNAGI constructs a ‘cellular dynamics tree’
that maps the transitions of various cell states and populations as the

disease advances. This approach incorporates key genes, including
dynamic markers and gene regulators, integral to specific disease
progression. Consequently, UNAGI identifies underlying GRNs gov-
erning these cellular dynamics, highlighting potential biomarkers
and therapeutic targets.

Different from other existing methods, the graph VAE-GAN model
in UNAGI benefits from the causal insights provided by the GRN recon-
struction module, which improves the interpretability of its latent
space and reconstruction. Toggling between graph VAE-GAN and the
GRN reconstruction model allows UNAGI to integrate the strengths
of associative learning and causal inference, leading to more accurate
disease progression modelling and interpretation.

Finally, UNAGIgenerates cell embeddings by leveraging its under-
standing of disease progression mechanisms. This enables insilico per-
turbations, unsupervised analysis of pathways and drug perturbations,
and distinguishesit from existing methods owing toits comprehension
of disease progression. This allows for the identification of potential
therapeutic pathways and potential drug candidates without needing
pre-existing drug perturbation training datasets, which are often dif-
ficult to acquire. Its unsupervised nature enhances applicability and
practicality across various complex diseases, offering an advantage
over many current approaches that rely on supervised learning and
extensive training sets.

UNAGI canyield a full spectrum of outcomes, from well-supported
findings to unexplored hypotheses. It revealed that stromal cells follow
specific trajectories during fibrosis progression, notably the marked
accumulation of fibroblast cells, which correlates with extensive fibro-
sisin IPF, while adventitial and alveolar cells are dynamically involved,
and vascular endothelial cells decrease as IPF progresses. Inaddition,
UNAGI identified cell-specific gene regulators such as CTCF, EP300
and SMC3, along with dynamic markers such as COL1A1 and COL14A1,
and static markers for sub-cell types, such as NLGNI and MFAPS, for
fibroblast adventitial cells, potentially leading to new biomarkers
and precise therapies. Furthermore, UNAGI highlighted potential IPF
therapeutic pathways, including Netrin-1signalling and ROBO recep-
tors, and potential drugs such as nifedipine as an anti-fibrotic, as well
as identified repurposed drugs for COVID-19, such as aloxistatin and
didanosine, demonstrating its broad potential in biomedical research.

Despiteits array of abilities, it isimperative to recognize UNAGI'’s
limitations, especially its dependency on the CMAP database for in
silico drug perturbation. The CMAP database, though invaluable, has
its set of challenges. It does not encompass all potential drugs and
compounds, thereby narrowing UNAGI'’s drug screening horizon. In
addition, the impact of drug perturbations on a variety of cell types
within CMAP remains either inadequately explored or ambiguous.
Incorporating a more detailed and expansive drug perturbation or
drug target database could amplify UNAGI’s prowess inin silico drug
perturbation. Lastly, as different patients may develop distinct disease
progression patterns™®, itis crucial to classify patients into progressors
and non-progressors for precision medicine. While the UNAGI model
was not specifically developed for this application, it can be custom-
ized byincorporatinga classifier to predict the patient category from
thelearned cellembeddings. Inaddition, UNAGI can predict effective
drug candidates through in silico screening, but it is not able to fully
elucidate their mechanism of action. However, these efforts are beyond
the scope of this study.

UNAGI is an Al-based computational framework designed to
uncover distinct cellular trajectories during disease progression, ana-
lyse regulatory and perturbation shifts, and predict drugs that can
reverse these shifts. We demonstrated its performance on a unique
dataset of tissues from patients with IPF, providing detailed observa-
tions, proteomic and experimental validations, and its applicability
toanother disease, COVID-19. The widespread availability of UNAGlis
expected to enhance our understanding of complex diseases and accel-
erate therapeutic development by repositioning known compounds
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and modelling their effects. Beyond disease-related applications,
UNAGI can potentially be applied to developmental systems such
as embryogenesis'’, organogenesis™*® and neurogenesis'*’ to infer
underlying temporal GRNs and identify potential interventions for
manipulating cell fates.

Methods

Dataset description and preprocessing

snRNA-seq IPF dataset. In this study, we used snRNA-seq technology
to profile the IPF disease progression. For the advantages of using
snRNA-seq over scRNA-seq in this study, see Supplementary Note 4.
The snRNA-seq IPF dataset was collected from a total of 19 individu-
als, comprising 10 healthy donors and 9 patients with IPF. Biobank-
ing was approved by the local medical ethics committee of the KU
Leuven University Hospital (ML6385). A secondary approval (number
2000025427) at the Yale Institutional Review Board was obtained.
Recognizing that different regions of the lung may be at varying tis-
sue fibrosis grades of disease progression*’, we utilized cells isolated
from these distinct regions within the IPF lung to model the temporal
progression of IPF. Altogether, the dataset consists of 30 samples from
control subjects and 24 samples from patients with IPF. We elaborated
the details of step-by-step data preprocessing and cell-type assign-
ments (the ‘ground truth’ column in Supplementary Fig. 1) of the IPF
dataset in Supplementary Note 4. Following the preprocessing, we
adopted the stromal cellline thatencompassed 231,477 cellsand 2,484
genes to validate the UNAGI method.

scRNA-seq COVID-19 PBMC dataset. We used an annotated PBMC
COVID-19 dataset'*® containing more than 780,000 cells from 130
patients. We subsetted the dataset by using patients with ages between
50 and 69 to evaluate the generalizability of UNAGI. In total, we have
246,948 cells from 47 patients, 26 of them are males and 21 of them
are females. According to the severity of patients, we categorized
theminto four COVID-19 severity levels. Specifically, 10 patients were
categorized as healthy (36,198 cells), and 10 patients were classified as
asymptomatic or mild (62,856 cells). The moderate datais composed
of 15 patients (97,266 cells), while the severe or critical comprises 12
patients (50,628 cells). In the preprocessing step, we selected the top
6,000 highly variable genes for downstream analysis.

Graph VAE-GAN
Our UNAGI method introduces a graph VAE-GAN model. To leverage
cellular neighbours to diminish the effects of dropouts and noise”, we
stacked a cell graph convolution (GCN) layer on top of VAE. A graph
convolutionlayeris aspecialized type of neural network that can cap-
ture the topological structure of data, particularly by identifying fea-
tures within local neighbourhoods. GCN aggregates cell-cell
relationships to construct a graph (V,E), where VVdenotes the vertices
(cells) and E represents the edges (connections between cells). To
establish thisgraph, the K-nearest neighbours (KNN) algorithm is used
to build the connectivity matrix A, which defines the similarity between
cells. The graph convolution is defined as fey (X, 4) = a(AXW °),
where WeNrefers to the trainable weights of the GCN layer and ais the
activation function. Importantly, cells from different disease grades
(phases of cellular states during disease progression, characterized by
patient samples or cells) are not connected in the connectivity graph
A, maintaining a disease grade-specific cell graph convolution.
UNAGI uses a VAE-based deep-learning model*® to model the cel-
lular dynamics behind complex disease progression and simulate the
drug perturbations. The VAE’s encoder-decoder structure can model
the probability distribution of high-dimensional data in a
lower-dimensional space and generate new samples from this
reduced-dimensional distribution. As a variational method, it facilitates
theinsilico perturbation of cells by modulating their gene expressions.
To refine the generative ability of VAE, we followed the previous

method"’to use GAN to guide the generation of VAE with the min-max
training strategy™'. The encoder of the graph VAE-GAN, E;:R" > R', con-
sists of a GCN layer and several multi-layer perceptrons (MLPs). It can
transformacell x;,eR™ toiits corresponding [-dimensional latent vector
z,. The GCN layer takes the normalized cell-by-gene count matrix Xand
connectivity matrix A, generating a graph representation
SoenXA) = a(AXWE™), where W are weights of the GCN layerand ais
theactivation function. Acknowledging that the latent distribution of
single-cell data follows a multivariate normal distribution, two MLPs
are used to determine the mean vectors p, =f,, (1| foen (X,A)) and
log-standard deviation vectors log o, = f;,, (log 0| focn (X, A))of thelatent
representation. The standard deviation of the latent representationis
o, = e®. Thelatentrepresentationforacellisrepresented as z~. (i, 02),
andthe approximated posterior distributionis represented as g, (Z1X,A).
The decoder p,, : R - R*" takes Z as input to reconstruct the
cell-by-gene count matrix. We used the ZILN distribution to model the
gene expression. The ZILN model is a composite distribution that
integrates two distinct distributions: the first partisaBernoulli distri-
bution, Bernoulli (¢), which accounts for the dropout events commonly
observedinsingle-cell sequencing. The second component of the ZILN
model captures the actual gene expression levels following alog trans-
formation, represented by log 4" (i, 02). The likelihood function of a
reconstructed cell xe X™", where mis the number of cellsand nis the
number of genesinacell, can be written as

Po(X[2) = [T ZILN(xlgj. 1, 0%)
Jjen

(6]
= [1le;60(x) + (1 — g)LN(x; ;. 02,)(1 = 600(5))]
Jjen

—(iny -
1 202

iy
LN (it 02) = { gomm® 190 @
0, |ij =0
1, iij =0
Go(xj) = . 3
0, ifx;> 0

To reconstruct the cell-by-gene matrix X, the decoder p,, learns
parameters of the ZILN distribution, including the zero-inflation prob-
ability ¢ =/, €2, scale of the log-normal distribution o for each gene
(avector of learnable parameters) and mean u of the log-normal dis-
tribution, denoted as = £, (#|Z,0). The prior distribution p(2) is a
multivariate standard normal distribution. Within our framework, we
designated the entire graph VAE model as the generator G. The loss
function of the generator L, can be formulated as

Lg = L(6,9.X,A) = KL(ge(ZIX, D|Ip(Z ) - Eqyzxnllogp,(XIZ)]  (4)

Thefirst term of L;is the Kullback-Leibler (KL) divergences, which
quantifies the difference between the latent representation g, (Z | X,4)
learned by the encoder and the predefined prior distribution p(2). The
second termisthe expected log-likelihood of the input datagiven the
reconstruction generated by the decoder, acting as a reconstruction
loss. Together, L;promotes the model’s generative performance with
the probabilistic constraints of the latent space.

To further refine the generative capabilities of the graph VAE, an
adversarial discriminatorisincorporatedinto the model’s architecture.
Thisdiscriminatorisa classifier based on MLPs to distinguish between
original cells X and the reconstructed cells G(X,A) generated by the
graph VAE. A min-max adversarial training strategy is then applied,
aimed at optimizing the loss function Lg,y:

Lean = L(X,A) = min max Ex[log(D(X))] + Ex[log(l - DIGX. )] (5)
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Here D is the adversarial discriminator, and G is the generator (graph
VAE). During the training phase, cells are labelled as real or fake (pro-
duced by the generator for the purpose of adversarial training). The
discriminator, D, is optimized to effectively distinguish between real
and fake cell labels, aiming to maximize the probability of correctly
identifying real and generated cells. Simultaneously, the second term
of L,y incentivizes the generation of cell reconstructions that are
highly similar to the original data that D cannot distinguish them from
real cells. The overall loss function of UNAGI, denoted as L, is a com-
posite of the graph VAE loss and the GAN, written as L =L+ L.
Althoughitappears to suggest that VAE-GAN back propagates the sum
of L;and Ly, in practice, the optimizationinvolves distinct phases for
each component. Within the same epoch, a two-step optimization is
applied:inthefirststep, the graph VAE-GAN is optimized based on the
L;and the parameters are optimized using L,y in the second step. By
integrating these components, UNAGI harnesses the strengths of vari-
ous architectures, the GCN can leverage the cell-cell relationship
information, the VAE can model the complex single-cell data, and the
GAN canrefine the quality of cell generation.

Dynamics graph and underlying GRN inference

UNAGI builds adynamicgraphtoillustrate the progression of each cell
population (cell type or subtypes) throughout disease progression. We
applied Leiden clustering®™? on the latent embeddings, generated by
graph VAE-GAN, to identify distinct cell populations at each disease
grade (see Supplementary Note 5 for the clustering parameters opti-
mization strategy). To measure distances between cell populations
inadjacent disease grades, we used the KL divergence rather than the
Euclidean distance, which can be problematic in high-dimensional
data contexts™*"*. For each cell population (for example, cell type), we
approximatedits distribution using aMonte Carlo sampling strategy™”
involving the sampling of each dimension of the latent embeddings
athousand times to form a multivariate normal distribution. The KL
divergenceis calculated to measure the distance between these popula-
tions’ multivariate normal distributions.

In addition, we identified the top 100 DEGs in each cell
population. We then calculated DEG distances among cell
populations across disease grades. The DEG distance is defined as
T4 (DEGe1, DEGe2) X ¥, |RC; - ch.2|, where thefirsttermisthe]Jaccard
distance between DEG,, and DEG,,, DEGs of two cell populations. The
second term considers the ranking difference between two DEG lists.
Here chlandRCerepresent theranking of genejin DEG.andDEG,,, respec-
tively. Torender the KL divergence and the distances of DEGs compa-
rable, weimplemented min-max normalization for each metric across
all potential connections withinaspecific cluster. After normalization,
werepresented the distances between each cluster pair as the sum of
the normalized KL divergence and the normalized DEG distances. We
then compiled these normalized distances for all possible connections
across various disease grades to create abackground distance distribu-
tion. This distribution is essential for assessing the statistical signifi-
cance of connections between clusters throughout the different grades
of the disease. In scenarios where a cluster is connected to more than
one cluster in an adjacent grade, the most statistically significant
oneis used. These significant connections form tracks that trace from
the control to the final grade of the disease, defining the disease pro-
gression. Consequently, the dynamic graph Ggynamic includes these
progression tracks, each representing acomprehensive cellular state
transition associated with a specific cell population during disease
progression.

Moreover, we used iDREM (Interactive Dynamic Regulatory Events
Miner)*¢, amachinelearning model based on aninput-output hidden
Markov model, toreconstruct the temporal GRN underlying the recon-
structed cellular dynamics graph Ggynamic (Supplementary Note 6).
iDREM also captures the gene regulators that modulate those gene
paths during disease progression. The dynamic genes and gene

regulators identified through this process are considered dynamic
marker candidates and hold potential as therapeutic targets for
the disease.

Iterative training strategy of UNAGI

The training strategy for UNAGI is structured as an iterative pro-
cess, consisting of two primary phases that are cyclically repeated:
(1) learning cell embeddings using the VAE-GAN framework and (2)
constructing a cellular dynamics graph and identifying critical genes
and gene regulators. Initially, with the cell embeddings learned with
equalimportance of all genes in the loss function (generic learning as
in existing methods), we used the dynamics graph module to recon-
struct the cellular dynamics and identify critical genes that influence
disease progression, using the iDREM algorithm. UNAGI establishes a
gene-weight table for each cell, increasing the weights of key genes and
theirregulators toreflect their roles in disease progression. To mitigate
cell mis-clustering at initialization, UNAGI uses a weight-decay strat-
egy where genes strongly associated with disease progression retain
consistently increasing weights, while noisy genes have their weights
progressively reduced in each iteration, preventing their influence
from accumulating by the end of training. See Supplementary Note 7
for methodological details. Supplementary Figs. 18-20 illustrate the
effectiveness and robustness of this weight-decay-based iterative
training strategy.

Next, in the cell embedding learning of the subsequent iteration,
the VAE model undergoes fine-tuning with amodified loss function that
accentuates the high-weight genes. This enhancementisaccomplished
by integrating the gene weights in all cells into the reconstruction
loss function, thereby shifting the model’s focus from generic genes
to those disease-associated genes identified through GRN inference.
During each iteration, after the cell embeddings are updated, the
cellular dynamics module steps in to rebuild the cellular dynamics
graph and the associated GRNs. This step plays a crucial role in refin-
ing and updating the disease-associated genes. These enhancements
feed back into and improve the cell embedding learning in the next
iteration. However, the revised cell embeddings generate an updated
cellular dynamics graph and its GRN, offering adeeper understanding
of disease progression and potentially advancing the identification of
disease-specific genes, which in return improves the cell embedding
learning in the next iteration.

Upon model convergence, the highest-weighted genes are asso-
ciated with the disease and thus indicating that UNAGI can indeed
‘comprehend’ the disease and recognize important disease-relevant
genesduring theiterative training. For instance, enrichmentanalysis
shows that the top 100 weighted genes are closely associated with IPF
(Supplementary Fig.21). At each trainingiteration ¢, the gene weights
are transformed into a ranking matrix, R". The objective functions of
UNAGI during its iterative training can be then refined as follows to
integrate the distilled disease knowledge in the gene-weight table
foreach cell:

Ly = L6, 9", X, A) = KL(qg:(ZIX, A)||P(2))
1 (6)
R’ )]

L = L(X.A) = min max Ex[log(D‘(X))] + Ex [log(1 - D(G'X.A))] (7)

—Ege(z1x.4) [IOqu)t X12) (1 +

L'=1'c+Lcan.t€(0,L,...,T) ®

Here G' represents the generator at the tthiteration, and D'is the dis-
criminator at the sameiteration. L. denotes the loss of generator, LL, |
denotes theloss of GAN at the tthiteration and ris a hyper-parameter

thatisresponsible for controlling the influence of gene weights onthe

Nature Biomedical Engineering | Volume 9 | December 2025 | 2155-2180

217


http://www.nature.com/natbiomedeng

Article

https://doi.org/10.1038/s41551-025-01423-7

reconstruction loss (empirically set T as 0.5). UNAGI increases the
weights for high-ranking genes to emphasize disease-associated genes
and regulators. The weights for low-ranking genes remain roughly
unchanged, ensuring that information associated with those genes is
not discarded. Through this iterative training, UNAGI progressively
improvesits ability to generate disease-specific cellembeddings. This
approachallows for the identification of disease-specific markers and
supports disease-specificin silico perturbations.

Dynamic and hierarchical static markers discovery

To characterize the temporal progression of the disease for each cell
population, UNAGI identifies dynamic markers that are genes that
change considerably throughout the disease’s progression. For each
trackin the cellular dynamics graph, iDREM identifies the gene paths
with co-expression patterns during disease progression. Then UNAGI
generates the background simulation tracks toidentify dynamic mark-
ers. Thissimulation processis repeated Ntimes (N >1,000) to establish
arandom background distribution. We then evaluated the P values
for each candidate marker based onits accumulated sum fold change
against this background distribution. We imposed a more stringent
FDR cut-off (FDR < 0.01) than the default (FDR < 0.05). These selected
dynamic markers areimportantindelineating the progression tracks
and provide adetailed understanding of the longitudinal evolution of
the disease within each distinct cell population.

The hierarchical static marker discovery approach supports the
identification of intra-disease grade static markers through hierar-
chical clustering. UNAGI conducts hierarchical clustering based on
the embeddings of cell populations at each disease grade, thereby
generating dendrograms to depict the relationships among these
populations. In this dendrogram, when focusing on a particular
cluster, we analysed it at various levels to identify hierarchical static
markers. At lower levels of the dendrogram, the selected cluster
compares with a broader range of sibling clusters. Conversely, at
higher dendrogram levels, the siblings are more closely related to
the selected cluster. This closeness allows for the identification of
markers that highlight the subtle heterogeneities among cell sub-
populations within the same cell type. For details of marker discovery,
see Supplementary Note 8.

Insilico perturbation strategies

Insilico perturbation can be executed through two strategies: (1) direct
geneexpressionregulation. Thisapproachinvolves the direct upregula-
tion or downregulation of specific genes of interest. For a cluster of cells,
we defined an expression regulation vector A = [Ag, Ay, ..., A, |, Where
each A,, represents the expression change of gene gn (for example,
A, =0.5would indicate an increase in the expression of gene gl by 0.5).
Thegene expressionforaperturbed cell population X’.canbe defined as

X'c =max(Xc +1,A,0) 9)

Here X.represents the original cell-by-gene matrix of a cell population
¢, and M, represents the number of cells within the cell population.
(2) Geneinteraction (GI) network-based regulation allows simulating
the downstream effects of GRNs. In this strategy, we could regulate
the genes of interest and their interacting partners based on the GI
network. If one gene expressionis changed, the changes are transmit-
ted to connected gene in the Gl networks according to the influence
factor /between them. The Gl networks were built based on the HIPPIE
database™®and STRINGDB™. From these two databases, we obtained
the strength of Gls y of different gene pairs. For a certain cell population
c,wetransformed the cell-by-gene matrix X, into agene-by-cell matrix
Y.and used PCAto generate low-dimensional embeddings P, for each
geneacross the cell population. The influence factor /(Q,R)e(-1,1) quan-
tifies the extent to which the perturbation of a given gene Q impacts
onanothergeneR./(Q,R) is defined as

0, if Qand R are not connected
lQ Ry = [ 1Pg=Fal . (10)
sgn(cor(y,,Yg)exp (—ws m) ,otherwise
Lx>0
sgn(x)={ 0,x=0 (11)
-1,x<0

Herey,andy, are gene expression vectors of genes Q and R, respec-
tively,inthe Y.. Theterm (Q,R) denotesasequence of hopsfrom QtoR
inthe Gl network, y, denotes the strength of GIs of ahop in (Q,R), w;is
the steepness weight (w, > 0 and empirically set to 0.2 by default) to
control the influence factor, cor(y,,3%) quantifies the correlation
betweentwo genes, and sgn(x) indicates the direction of their interac-
tions. The gene of interest tends to impose higher impacts on genes
that directly interact with. Conversely, genes that are further away in
the Gl network are less influenced. When regulating a specific gene i
by changingacertainmagnitude A, (forexample, A, =-0.5candecrease
the expression of gene np by 0.5). The expression regulation vector for
this scenario is formulated as A = [A,/(1,81), Ay (11.82) ..., Ayl (0. 8)] -
If multiple genes G, are perturbed with individual magnitudes, the
expression regulation vector is

A=Y Ali.g), X Al g), ..., 20 Aid(i &) (12)

ieGp ieGp ieGp

The gene expression for a perturbed cell population X', is then
calculated as defined in equation (9). Not only does the Gl-based in
silico perturbation impact genes that are not direct drug targets, but
the nonlinearity feature of deep neural networks can also affect indi-
rect target genes (even only directly changing the expression of drug
targets). Thegraph VAE model can extract the gene-generelationships
within a cell and reconstruct cells based on these features. When per-
turbing genes using the pre-trained encoder, the nonlinear architec-
ture helps propagate the expression changes to downstream targets.
This is facilitated by the weights and biases of the encoder, which are
optimized to describe the generegulatory information within the cell.
This mechanism allows the model to simulate the downstream effects
of Gl networks, thereby impacting other genes at the cell embedding
level by modifying only afew genes.

Insilico perturbation scoring

We performed perturbations on every disease grade of individual
tracks using the perturbed cell-by-gene expression matrix X’. This
matrix X’ is fed into the encoder of the graph VAE-GAN, yielding the
perturbed latent cell representation Z’ = E4(X’,A). The efficacy of these
perturbations is assessed by examining the changes in the distances
between cell populations within the latent cell embedding space.
Specifically, the distance between two cell populations in the latent
space Zcanbe quantifiedas §;, ; = |7, - Zjl, where i’ is the perturbed
cell population andjis another cell population within the same track.
The perturbation score of a track S,,,..€[-1, 1] at a perturbed disease
gradeiis defined as

T

1 2
Serack () = = (1 - —
ek Tj=0§.;'¢i 1+exp (w(6y,; - 6;;)sgn (j— D)

) 13)

Here Trepresentsthe total number of disease grades, iis the per-
turbed disease grade, w is a hyper-parameter to control the scaling
(empirically, wis set as 100 in our case), §;; is the distance between
disease gradesj and i (unperturbed), and & is the distance between
disease gradesj and i (perturbed). The function sgn(x) (as defined
in equation (11)) is a perturbation indicator function to ensure the

Nature Biomedical Engineering | Volume 9 | December 2025 | 2155-2180

2172


http://www.nature.com/natbiomedeng

Article

https://doi.org/10.1038/s41551-025-01423-7

perturbed cell population that comes closer to the control grade will
always have a positive and higher score while moving away leads to
anegative and lower score. In addition to track-level perturbation
scoring, an overall score S assesses perturbation effects across all
tracks. This overall score is normalized based on the proportion of
cellsineach perturbed track within the dataset. It also incorporates the
gene-regulating directions of compounds, asindicated in the relevant
database, including their reversed directions. The overall score S for
all disease grades is defined as follows:

N 152 ()=S0
2

S= 14)

hetracks N iestages

where o represents the perturbation direction that aligns with the
reported direction of the drug target expression change, while &
denotes the opposite drug target expression change direction as
reportedinthe CMAP database. The overall score S€[0, 1]is calculated
by considering in silico perturbations in both directions, enhancing
robustness. This approach is based on the premise that perturbing
the targets of an effective drug in opposite directions should lead to
ahigher 7 () andlower S (i), resulting inanincreased score S. Nhere
is the total number of cells and N, is the number of cells in the per-
turbed track.

Therapeutic pathways screening

We used pathway datafrom REACTOME"®, MatrisomeDB"’ and KEGG'*°
databases, providing lists of genes associated with various biological
pathways. Since the set of genesinindividual single-cell transcriptome
datasets canvary, we only included expressed genes of pathway targets
after preprocessing for insilico pathway perturbations. We applied the
scoring and ranking strategies as discussed in the ‘Insilico perturbation
strategies’and ‘Insilico perturbation scoring’ sections above to identify
potential therapeutic pathways. To assess the significance of our in
silico pathway perturbations, we established a random background
dataset by randomly sampling n genes 1,000 times, where n is set to
the median number of genes across all pathways. The perturbation
strength A used for random background perturbations was matched
tothatused for the actual pathway insilico perturbations. We executed
insilico perturbations using the random dataset described above to
generate a random background therapeutic score distribution. By
contrasting the perturbation scores with this background distribution,
we could ascertain the statistical significance of the in silico pathway
perturbations. Thisapproach aidsinidentifying potential therapeutic
pathways with an FDR-BH of less than 0.05. To further validate the
robustness of our pathway perturbation strategy, we conducted a simu-
lation study using the Netrin-1pathway. We replaced 15% of the genesin
this pathway with random genes and conducted insilico perturbations,
comparingthese results with perturbations using acompletely random
setof genes. Across 100 experiments with different random seeds, the
median perturbation score of the modified Netrin-1 pathway remained
very closetothe original score (0.6351 versus 0.6548), while therandom
gene sets scored considerably lower (Supplementary Fig. 22).

Candidate drugs and compounds screening

Weused compoundsand their target genes from the CMAP database®**,
which contains 34,396 compound or drug profiles. Similar to the path-
way perturbation, we used expressed genes after preprocessing and are
listed as drugs’ targets forinsilico drug perturbations. We applied the
scoring and ranking strategies as discussed in the ‘Insilico perturbation
strategies’and ‘Insilico perturbation scoring’ sections above toidentify
potential drug candidates. The method for calculating the statistical
significance of in silico drug perturbations was akin to that used for
therapeutic pathway perturbations, as mentioned previously. The
primary distinction lies in the number of genes selected for creating
the random background score distribution.

Verify UNAGI biomarkers by proteomics data

Proteins were extracted from pulmonary tissues using the MPLEx
protocol*¢*, Thirty tissue blocks from IPF donors and 10 from con-
trol donors were used. For detailed experiments, protocols and data
preprocessing, see Supplementary Note 9. After preprocessing, we
adopted a more stringent FDR cut-off (FDR < 0.01) than the default
(FDR < 0.05) to identify highly confident dynamic proteins. To verify
the temporal dynamic markers determined for each progressiontrack,
weapplied hypergeometric testing. This test assessed the overlapping
ratiobetween dynamic proteins and dynamic markers. The overlapping
between these two marker lists associated with a trackis considered sta-
tistically significant if the FDR from the hypergeometric testis less than
0.05.We thenused heat maps to visualize the LFQ intensities and gene
expression from proteomics data and snRNA-seq data, respectively.

PCLS experiments

To assess UNAGI predictions in a human-relevant context, we utilized
PCLS. Recent studies suggest that PCLS provides amore accurate rep-
resentation of human IPF compared with traditional animal models'®.
The commonly used bleomycin mouse model suffers from notable
discrepancies between human and mouse biology, particularly in the
context of human pulmonary fibrosis'**8, We adopted nifedipine in
our PCLS experiments because nifedipine or any other calcium entry
blockers are not on the radar for pulmonary fibrosis drug develop-
ment and nifedipine’s anti-fibrotic effectiveness had not been tested in
human samples before. Therefore, PCLS serves as animportant tool for
providingamore human-relevant model to investigate the anti-fibrotic
efficacy of nifedipine'®'®’,

Fresh lung tissue of explanted donor lungs was used for human
PCLS according to previously published protocols**'**'"°. Donor
lung samples were sourced from six males and four females and were
obtained fromthe Center for Organ Recovery and Education (CORE) at
the University of Pittsburgh. Donor lung samples originated from lungs
deemed unsuitable for organ transplantation. For the fibrosis induc-
tionin hPCLS, PCLS were treated for 5 days with a control cocktail (CC),
includingall vehicles or a pro-fibrotic cocktail (FC) consisting of TGF[3
(5ng ml™, Bio-Techne), PDGF-AB (10 ng ml™, Thermo Fisher), TNF-a
(10 ng ml™, Bio-Techne) and LPA (5 pM, Cayman Chemical) as described
before"”", For drug treatments, PCLS were treated with FC allowing
for theinduction of fibrosis, and drug treatment started at day 3 until
day 5. Atthe end of the experiment, PCLS were snap-frozenindividually
in liquid nitrogen for single-nuclei analysis, as described above. The
study was approved by the University of Pittsburgh (IRB PRO14010265).
Written informed consent was obtained for all study participants.
Nuclei were extracted using the Nuclei Isolation kit (CGO00505, 10x
Genomics). Nuclei (20,000) were loaded on a Chip G with Chromium
Single Cell 3’ v3.1 gel beads and reagents (3’ GEX v3.1,10x Genomics).
Final libraries were analysed on an Agilent Bioanalyzer High Sensitiv-
ity DNA chip for qualitative control purposes. cDNA libraries were
sequenced on a HiSeq 4000 lllumina platform aiming for 150 million
reads per library and asequencing configuration of 26 base pair (bp) on
readland 98 bp onread2. We used Cell Ranger'** (v4.0.0), Cutadapt'”?
(4.1) and STAR (v2.7.9a) to build fastq reads, contaminant trimming
andreads alignment. Then we used Seurat for data preprocessing (see
Supplementary Note 10 for details).

Wethenapplied thegraph VAE-GANto learn the latent embeddings
ofthe PCLS data. To quantify the effects after treating the fibrosis cells
with the drugs, we calculated the pairwise Euclidean distance from
control cells to real treatment cells and fibrosis cells in the reduced
latent space. We used the difference between the centroid of fibrosis
cellsand the centroids of real treatments as the perturbation strength
vector A. We conducted in silico drug perturbations on fibrosis cells
using a consistent perturbation strength A. The efficacy of these in
silico perturbations was evaluated through UMAP visualizations and by
measuring the pairwise Euclidean distances between cell embeddings
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inlatent space. Our primary objective was to ascertainifinsilico drug
perturbations could replicate the cell embeddings in latent space as
observed with actual drug treatments, thereby validating the accuracy
of UNAGI-driveninsilico drug perturbations. In addition, to compare
the similarity of the differential genes associated with the insilicodrug
perturbations (insilico drug perturbation versus fibrosis) and those of
realdrugtreatment (drug versus fibrosis), we used RRHO plots. Moreo-
ver, box plots and the R? score with F-test were used as analytical tools
to quantify gene expression similarities between cells under actual
drug treatments and cells produced from our in silico perturbations
for both nintedanib and nifedipine.

Benchmarking

Embedding quality. To evaluate UNAGI’s performance in learning
latent embeddings from single-cell data, we compared it with several
other methods by running individual methods ten times with differ-
ent random seeds. These included VAE-based dimensionality reduc-
tion techniques such as scVI' and scGEN®, the foundation models,
scGPT?, Geneformer'**and Universal Cell Embeddings (UCE)'"”, other
deep-learning methods using GAN or GCN, including GraphSCC%, scG-
GAN? and scGNN?, as well as standard single-cell analysis pipelines
such as Seurat and SCANPY. To show the necessity of using rigorous
data cleaning and normalization strategies to preprocess the complex
single-cell dataset (for example, the IPF dataset), we kept the top 2,000
highly variable genes and ran standard SCANPY pipeline to analyse the
raw IPF dataset. We adopted bio-conservation metrics from Luecken
et al.'®, including ARI, NMI, graph cell-type local inverse Simpson’s
index (graph cLISI), silhouette score, cell-type ASW, isolated label
F1and isolated label silhouette score, SCIB bio-conservation overall
score'” along with Davies-Bouldin index (DBI)""* and label score'”
to evaluate the benchmarking methods. The label score assesses the
consistency of celltypesinthe cell neighbourhoods. The DBI measures
the average similarity ratios between clusters. The silhouette score
evaluates the cohesion and separation of clusters in the embedding
space, and cell-type silhouette score assesses the cohesion and sepa-
ration of cell populations in the embedding space. Isolated cell-type
Flscore describes how wellisolated cell types are distinguished from
other cell types. ARl and NMI calculate the coherence between the
cell populations identified by clustering methods and ground truth
cell types. Graph cLISI measures the preservation of cell populations
across datasets andisacritical metric for assessing the robustness and
generalizability of cellembeddings. The SCIB overall bio-conservation
score is the average of ARI, NMI, cell-type ASW, isolated cell-type F1,
isolated cell-type ASW and graph cLISI. In our IPF dataset, we provided
handcraft cell-type annotations derived by recursively annotating and
refining cell types on individual samples. Thus, the results from the
standard Seurat pipeline cannot serve as a perfect proxy for the ground
truth scores to evaluate the clustering results from other methods.
Because UCE is designed specifically for the zero-shot usage, we only
tested it in zero-shot mode (Supplementary Fig. 12 and Supplemen-
tary Note 11), while scGPT and Geneformer were evaluated in both
fine-tuned and zero-shot settings. See benchmarking method details
inSupplementary Note 12.

Computing efficiency. To evaluate the computational efficiency
of processing large-scale single-cell data, we analysed the memory
requirements and running time of various deep-learning methods,
including UNAGI, scGEN, scGPT, scVI, GraphSCC, scGGAN and scGNN.
The experiments were conducted on a workstation equipped with an
RTX4090,AMD Ryzen Threadripper Pro 5965wx and 256GB RAM. We
downsampled the IPF dataset (231,477 cells with 2,484 genes) into
subsets 0f 23,000 cells (-10%),46,000 cells (~20%), 58,000 cells (-25%),
116,000 cells (-50%) and 173,000 cells (-75%) to assess the efficiency of
eachmethod on different scales. After data cleaning and normalization,
we ran each method, recording the total running time and memory

usage for preprocessing, model training, clusteringand UMAP genera-
tion. We also compared the inference efficiency of all benchmarking
methods using the IPF dataset with 231,477 cells and 2,484 genes.

Disease-associated pathway identification. We benchmarked against
existing methods to identify disease-associated pathways by using the
embeddings generated by other methods to build the dynamic graphs
and run iDREM to reconstruct the temporal regulatory networks for
individual cell tracks (the trajectories represent the change of cellular
states associated witha certain cell population during disease progres-
sion, from healthy to the end disease grade). We used the mostincreas-
ing set of genes fromthe iDREM results of fibroblast alveolar tracks to
perform pathway enrichment analysis to identify disease-associated
pathways. We used the cellembeddings generated from theembedding
quality benchmarking experiments to build the dynamics graphs and
perform the pathway identification experiments using Toppgene®.
We used the -log,,(FDR) to represent the significance of identified
pathways from the Toppgene.

Disease marker identification. Ina manner similar to theidentification
of disease-associated pathways, we derived the temporal dynamics
graphusingidentical experiment settings. We then proceeded toiden-
tify the dynamic markers in fibroblast cell tracks by using the method
described in the ‘Dynamic and hierarchical static markers discovery’
section. To evaluate the agreement between the disease markers and
the proteomics markers, we performed the hypergeometric test to
evaluate the overlapping of dynamic markers and proteomics mark-
ers described in the section ‘Verify UNAGI biomarkers by proteomics
data’ of Methods.

In silico drug screening simulation. We benchmarked UNAGI against
scGPT?, scVI¥, Geneformer™** and scGEN®, and directly calculated
theshiftsinthe gene space (denoted as ‘Original’) ontheinsilicodrug
screening task. We excluded UCE from this drug screening benchmark-
ing owing toits high computational complexity (Extended DataFig. 4c).
We separated the dataset into healthy control and IPF disease groups
totrainthescGENtolearnthetransition between IPF and healthy cells.
For scVI, we used tissue fibrosis grades as the batch label to learn cell
embeddings. scGPT was fine-tuned on the IPF datato generate the cell
embeddings. Todirectly calculate the shiftsin the original gene space
(‘Original’), we did not perform dimensionality reduction. Using the
same strategy as UNAGI, we modified the gene expression values as
the input to send to these methods. Deep-learning-based methods
calculate theinsilico perturbation scorein the cellembedding. For the
‘Original’method, we used the (1-COrrspe,man) as the distance metric to
calculate the perturbation score.

To run the benchmarking experiments, we generated simulated
data by shuffling gene expression profiles and implanting drug effects
as ground truth by manually altering the expression of their target
genes (see Supplementary Note 13 for details). For UNAGI, scGPT,
Geneformer, scVl and scGEN, we pre-trained the model (fine-tuned
scGPT and Geneformer) on the original dataset before executing simu-
lation tasks.

The modified fibroblast cells were then sent to the fine-tuned
deep-learning models to obtain the perturbed cell embeddings. We
established the random background score distribution by perform-
inginsilicodrugperturbations 2,000 times on the original dataset by
randomly sampling n,genes, where n, is sampled from the probability
based on the number of target genes for the drugs that we used. The
FDR of simulation perturbation scores was calculated against the ran-
domscorebackground distribution. We used FDR < 0.05 as the cut-off
to determine whether the in silico perturbation could identify the
simulated drug or not. Using this strategy, we can evaluate the model
asaclassifierinabinary classification task, specifically in determining
the effectiveness of simulated drugs. The model’s performance indrug
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screening was assessed using the AUROC and the AUPRC metrics, as
implemented inscikit-learn'””. In this binary classification setting, both
the ROC and PRC curves have only one classification threshold of 0.5.

Predicting post-treatment gene expression changes. We bench-
marked UNAGI with scGPT, scGEN and scVI, and directly changed the
gene expression (‘Original’) to predict the gene expression after treat-
ments using the snRNA-seq PCLS dataset. We excluded Geneformer
from post-treatment gene expression prediction benchmarking owing
to its BERT-based structure. This dataset consists of four groups of
data, control, fibrosis cells, fibrosis cells after nifedipine treatment
and fibrosis cells after nintedanib treatment. First, we trained UNAGI,
scVland scGEN onthe control and fibrosis group of data. UNAGI treated
them as the control and disease grades, scGEN considered them as two
states, and scVI treated control and fibrosis groups as two batches.
Second, we identified the top 10 DEG markers after ex vivo nintedanib
and nifedipine treatments on fibrosis cells (treatment markers). We
modified the expression of the top 10 nifedipine or nintedanib treat-
ment markers and sent the modified cells into the model to predict
cells after treatments. For the ‘Original’ method, we directly modified
the top nifedipine or nintedanib treatment markersin the gene space.
For scGPT, the performance of scGPT in embedding cells increases
largely after fine-tuning (Supplementary Note 14). Thus, we fine-tuned
the model onthe control and fibrosis cells and performed supervised
perturbation prediction using fibrosis cells and treatment cells (see
details in Supplementary Note 15). During the testing process, we
investigated how the model can predict the perturbation using only
thetop 10 treatment markers, like other methods. We excluded GEARS
inthe benchmarking, because it fell short compared with scGPT and it
lacks the ability to produce cell embeddings for in silico drug screen-
ing®. Then, we calculated the Pearson correlation of the changes from
fibrosis cells to cells generated by models and cells after ex vivo treat-
ments. Inaddition, we analysed the relationship between top-weighted
genes and the treatment markers. We used the Monte Carlo sampling
strategy to determine the percentile of the ranking for arandom set of
100 genes. We also performed the pathway enrichment analysis using
176

the Toppgene'®.

Ablation study

To investigate the contribution of individual parts to UNAGI’s perfor-
mance, we conducted ablation studies on cellembedding, cell genera-
tion and the identification of disease markers and disease-associated
pathways tasks using both IPF and the COVID-19 datasets. We compared
UNAGI with UNAGIw.o. GCN and GAN, UNAGIw.o. GCN and UNAGI w.o.
GAN to analyse the impacts of individual deep-learning components.
We used ZINB distribution in UNAGI (UNAGI w. ZINB) to process the
IPF dataset to evaluate the effectiveness of ZILN distribution. We also
conducted experiments to compare scVland scVI-ZILN in the IPF data-
set to show that ZILN distribution can also improve other methods.
The UNAGI w.o. iteration strategy directly trains the UNAGI model to
convergence without theiterative training strategy. The same asin the
benchmarking experiments, we ranindividual methods ten times with
different random seeds.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

IPF snRNA-seq (GSE286182)"78 canbe publicly accessible at https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE286182. The COVID-19
dataset (COVID-19 PBMC Ncl-Cambridge-UCL) is currently available
fromthe COVID-19 Cell Atlas at https://covid19cellatlas.org/. The pro-
teomics dataare publicly available via MassIVE with project identifier
MSV000093129 (or Zenodo repository at https://doi.org/10.5281/

zenodo.15597088 (ref.179)). The preprocessed PCLS data are available
atour GitHub repository (https://github.com/mcgilldinglab/UNAGI).
Hippie database™° can be publicly accessed at https://cbdm-01.zdv.
uni-mainz.de/~-mschaefer/hippie/download.php.STRINGDB" is pub-
liclyavailable at https://string-db.org/. REACTOME"® canbe accessed
athttps://reactome.org/, MatrisomeDB"’ is available at https://matri-
somedb.org/, and KEGG'® can be found at https://www.genome.jp/
kegg/pathway.html. The Connectivity MAP (CMAP)* database is pub-
licly available at https://clue.io/data/CMap2020#LINCS2020.

Code availability

The UNAGI software package and source code are available at our
GitHub repository (https://github.com/mcgilldinglab/UNAGI)*°. The
results and downstream analysis are available at our web server (http://
dinglab.rimuhc.ca/unagi). All preprocessed.h5ad files used in this
study are also available in the same GitHub repository. The software
and third-party packages used in this work, including PyTorch (version
2.0.0), SCANPY (version 1.9.5) and Pandas (version 2.1.0), are listed in
Supplementary Note 16.
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index (DBI); alower DBI signifies better clustering. k, evaluates the similarity
between original cells and generated cells. I, Benchmarking of the ability to
identify disease markers. Boxplots illustrate the P-value resulting from the
hypergeometric test of the overlap between proteomics markers and identified

disease markers. m, Benchmarking of the ability to identify disease-associated
pathways. The experiments in panels a-m run with different seeds (n =10). The
bar plots show the -loglO(FDR) of the significance of each identified pathway.
Theboxesina-lrepresent theinterquartile ranges (IQRs), and the solid lines
indicate the medians. The whiskers extend to points within1.51QRs of the lower
and upper quartiles. The error bars in m represent standard deviation (SD) and
dataare presented as mean values +/- SD. We applied one-sided hypergeometry
testand FDR correction using the BH procedure in panelsland m.
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Extended Data Fig. 7| Ablation studies show the contribution of individual
components to the embedding quality using the COVID-19 dataset.

a, Adjusted Rand Index (ARI). b, Normalized Mutual Information (NMI). ¢, Cell
type ASW.d, Isolated cell type F1score. e, Isolated cell type ASW. f, Graph cLISI
score. g, SCIB overall bio-conservation score. h, Silhouette score. i, Davis-Bouldin
index (DBI); alower DBI signifies better clustering. j, Label score; k, evaluates

the similarity between original cells and generated cells. From left to right, the

ablation models are UNAGI, UNAGI without GAN and GCN component, UNAGI
without GCN layers, UNAGI without the GAN module, UNAGI with the ZINB
distribution, and Train UNAGI directly to the convergency without applying the
iterative training strategy. The experiments in panels a-k run with different seeds
(n=10). The boxes in panels a-1represent the interquartile ranges (IQRs), and the
solid lines indicate the medians. The whiskers extend to points within 1.5 IQRs of
the lower and upper quartiles.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

/a | Confirmed

>

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

< A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection.

Data analysis The custom software UNAGI, available at https://github.com/mcgilldinglab/UNAGI, is developed based on Python (version 3.9, available at
https://www.python.org/). It also uses several public packages for data analysis, including pyro-ppl (version 1.8.6, available at https://
pyro.ai/), scanpy (version 1.9.5, available at https://github.com/scverse/scanpy), PyTorch (version 2.0.0, available at https://github.com/
pytorch/pytorch), numpy (version 1.24.1, available at https://github.com/numpy/numpy), scikit-learn (version 1.3.0, available at https://
github.com/scikit-learn/scikit-learn), matplotlib (version 3.7.1, available at https://github.com/matplotlib/matplotlib), and pandas (version
2.1.0, available at https://github.com/pandas-dev/pandas), Cell Ranger (version 4.0.0, available at https://www.10xgenomics.com/support/
software/cell-ranger/downloads), Cutadapt (version 4.1, available at https://cutadapt.readthedocs.io/en/stable/) and STAR (version 2.7.9a,
available at https://github.com/alexdobin/STAR/tree/master) and Seurat (version 1.8.2, available at https://github.com/satijalab/seurat)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

IPF snRNA-seq (GSE286182) can be publicly accessible at https://www.ncbi.nIm.nih.gov/geo/query/acc.cgi?acc=GSE286182. The COVID-19 dataset (COVID-19 PBMC
Ncl-Cambridge-UCL) is currently available from the COVID-19 Cell Atlas at https://covid19cellatlas.org/. The proteomics data are publicly available on MassIVE
(Server:massive.ucsd.edu, User: MSV000093129, Password: Lung5172). The preprocessed PCLS data is available at our GitHub repository (https://github.com/
mcgilldinglab/UNAGI). Hippie database can be publicly accessed at https://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/download.php. STRINGDB is publicly
available at https://string-db.org/. REACTOME can be accessed at https://reactome.org/, MatrisomeDB is available at https://matrisomedb.org/, and KEGG can be
found at https://www.genome.jp/kegg/pathway.html. The Connectivity MAP (CMAP) database is publicly available on https://www.broadinstitute.org/connectivity-
map-cmap.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender snRNA-seq data and proteomics were obtained from 9 patients with IPF, comprising 9 males, and 10 control subjects,
comprising 9 males and one female. Similarly, PCLS snRNA-seq data were sourced from 6 males and 4 females. Sex- and
gender-based analysis were not performed due to sample size limitations.

Reporting on race, ethnicity, or | Biobanked samples are anonymized and we do not have any information regarding race, ethnicity, or other socially relevant
other socially relevant groupings

groupings

Population characteristics For the snRNA-seq IPF dataset, age of controls subjects ranging from 48 to 74 years, and from IPF subjects ranging from 51 to
64 years. All samples in the snRNA-seq IPF dataset were from Belgian donors and patients. For the PCLS data, age of subjects
ranged from 24 to 68 years from American patients.

Recruitment Biobanked tissue samples of patients with IPF undergoing lung transplantation as well as donor lungs not suitable for
transplantation as controls were obtained. For the PLCS experiment, Donor lung samples, unsuitable for lung transplantation
were obtained from the Center for Organ Recovery and Education (CORE) at the University of Pittsburgh.

Ethics oversight Biobanking was approved by the local medical ethics committee of the KU Leuven University Hospital, Belgium (ML6385). A

secondary approval (# 2000025427) at Yale Institutional Review Board was obtained. PCLS biobanking was approved by the
University of Pittsburgh (IRB PRO14010265)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size For the IPF snRNA-seq dataset, we analyzed 231,477 cells from 10 healthy donors and 9 IPF patients; The proteomics data was obtained from
the same samples as those used for the IPF snRNA-seq dataset. In the case of the PCLS snRNA-seq dataset, it included 23,927 fibroblast cells
from a total of 10 donors, comprising 6 male and 4 female donors. and for the COVID-19 PBMC Ncl-Cambridge-UCL dataset, we analyzed a
total of 246,948 cells from 47 patients, comprising 26 male and 21 female donors.

Data exclusions | In the IPF snRNA-seq dataset, low-quality cells were removed as described in the 'Dataset description and preprocessing' section of the
Method. For the PCLS snRNA-seq dataset, low-quality cells were excluded according to the procedures detailed in the 'Precision-cut lung slice
(PCLS) experiments' section of the Method. Additionally, only fibroblast cells from the PCLS dataset were utilized. Regarding the COVID-19
dataset, the patient age range was limited to 50-70 years to minimize the sample size. Any cells expressing fewer than 300 genes and the
proportion of total counts for a cell are mitochondrial >4% were considered low quality and subsequently removed.

Replication We confirmed all the computational results were reproducible by running our UNAGI framework (https://github.com/mcgilldinglab/UNAGI)
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Replication multiple times using random initializations.

Randomization  To identify dynamic markers, we generated a random background foldchange distribution by permuting gene expressions multiple times
(N=1000). For evaluating pathway and drug in-silico perturbations, we created a background perturbation score distribution by randomly
sampling gene sets for in-silico perturbation. Furthermore, in our benchmarking and ablation experiments, multiple random seeds were used
to train UNAGI (N=15).

Blinding In the snRNA-seq IPF and snRNA-seq PCLS datasets, patient samples have been de-identified to ensure privacy and confidentiality. For

detailed information on the COVID-19 PBMC Ncl-Cambridge-UCL dataset, please refer to the COVID-19 Cell Atlas website (https://
covid19cellatlas.org)

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines & |:| Flow cytometry
Palaeontology and archaeology & |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern
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Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

Authentication Bg;c[rj/ﬁgéuggy atithentication-procedures for-each seed stock-tised-or-novel-genotype-generated.—Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,

off-target gene editing) were examined.
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