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A deep generative model for deciphering 
cellular dynamics and in silico drug discovery 
in complex diseases
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Laurens J. De Sadeleer7, Ivan O. Rosas8, Ricardo Pineda9, John Sembrat9, 
Melanie Königshoff    9, John E. McDonough3, Bart M. Vanaudenaerde    7, 
Wim A. Wuyts7, Naftali Kaminski    3   & Jun Ding    1,2,10 

Human diseases are characterized by intricate cellular dynamics. Single-cell 
transcriptomics provides critical insights, yet a persistent gap remains in 
computational tools for detailed disease progression analysis and targeted 
in silico drug interventions. Here we introduce UNAGI, a deep generative 
neural network tailored to analyse time-series single-cell transcriptomic 
data. This tool captures the complex cellular dynamics underlying disease 
progression, enhancing drug perturbation modelling and screening. 
When applied to a dataset from patients with idiopathic pulmonary 
fibrosis, UNAGI learns disease-informed cell embeddings that sharpen 
our understanding of disease progression, leading to the identification of 
potential therapeutic drug candidates. Validation using proteomics reveals 
the accuracy of UNAGI’s cellular dynamics analysis, and the use of the 
fibrotic cocktail-treated human precision-cut lung slices confirms UNAGI’s 
predictions that nifedipine, an antihypertensive drug, may have anti-fibrotic 
effects on human tissues. UNAGI’s versatility extends to other diseases, 
including COVID, demonstrating adaptability and confirming its broader 
applicability in decoding complex cellular dynamics beyond idiopathic 
pulmonary fibrosis, amplifying its use in the quest for therapeutic solutions 
across diverse pathological landscapes.

Complex diseases emerge through the interaction of genetic and 
environmental factors over time. The complexity of the interactions 
between these heterogeneous factors among individuals and popula-
tions challenges the understanding of disease progression1–3. Treating 
multifactorial diseases requires therapies that address multiple inter-
acting processes, but most therapies are developed using animal or 
cell culture models that fail to capture the complexity and dynamics of 
human disease4,5. Novel approaches that capture disease dynamics and 

cellular complexity are needed to facilitate the discovery and imple-
mentation of efficient therapeutic interventions for complex diseases.

Methods based on clinical data and electronic health records such 
as Boolean networks6, Bayesian networks, support vector machines7 
and decision trees8 can chart disease continuum states9, but do not 
address the molecular, cellular and genetic mechanisms underlying 
disease progression. This limitation lies in the lack of high-resolution 
genomic profiling10, which is crucial for understanding gene markers 
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cell states that are pivotal to diseases15. Computational methods16–24 
such as Seurat, SCANPY, scVI, GraphSCC, scGNN and scGGAN analyse 
the noisy, high-dimensional and large-scale scRNA-seq data and can 
even sketch cellular dynamics. However, scRNA-seq data is often a 
snapshot of the cellular states at a specific time point and cannot 

and gene networks, as well as for identifying therapeutics. Single-cell 
RNA sequencing (scRNA-seq) stands at the frontier of potential solu-
tions, offering an opportunity to analyse cell populations at single-cell 
resolution11,12. This technology can profile complex and heterogeneous 
biological systems13,14, uncovering rare cell populations and aberrant 
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Fig. 1 | UNAGI overview. a, Phase 1: UNAGI uses a VAE-GAN paired with a graph 
convolution layer. This set-up harnesses the complexities of single-cell data, 
producing a ‘Z’ latent space that bridges encoding and decoding with minimal 
error. b, Phase 2: derived from the ‘Z’ embeddings, a temporal dynamics 
graph emerges. Here the Leiden clustering method discerns cell populations, 
subsequently UNAGI connects them across disease grades based on their 
inherent similarity. c, Phase 3: the iDREM tool comes into play, spotlighting key 
gene regulators and genes that influence disease progression. These insights 
are channelled into an iterative model training, honing in on specific gene 

markers of the disease. d, With the model in place, UNAGI initiates in silico 
perturbations, either directly tweaking drug target gene expressions (i) or 
manipulating gene expressions via established gene interaction networks (ii) to 
simulate drug treatment impact. e, UNAGI’s encoder processes the perturbed 
cell population alongside its peers. The perturbation scores, derived from the 
‘Z’ space embeddings generated by the UNAGI encoder, assist in identifying 
potential drug candidates. These candidates are evaluated based on their ability 
to transition diseased cells towards healthier states, such as those resembling 
healthy control cells, thereby contributing to the treatment of the disease.
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account for the dynamic changes in cellular phenotypes, responses 
or differentiation states during disease progression. When applied 
to time-series scRNA-seq data, these methods tend to perceive the 
data as discrete snapshots, overlooking the continuity and temporal 
progression inherent in time-series data. Computational methods 
have been developed to address the challenges raised by time-series 
single-cell transcriptome data. However, both conventional methods, 
such as scdiff25 and CSHMMs26,27, and deep-learning-based methods, 
such as RVAgene28 and TDL29, are engineered for generic single-cell 
data processing, inadvertently bypassing the specialized necessi-
ties tied to complex diseases. The preprocessing and normalization, 
often required by noisy single-cell data for complex diseases, can shift 
the data into unconventional distributions, making them ill-suited 
for the direct application of many existing models19,30. In addition, 
the absence of disease-specific optimization in these approaches 
limits their understanding of the disease. When it comes to the step 
of cell embedding learning, existing methods are devoid of the flex-
ibility to integrate disease-specific signatures. This limitation makes 
them less effective at capturing the nuanced biological variations 
associated with complex diseases. Finally, a salient gap in current 
single-cell methodologies is the absence of unsupervised in silico 
perturbation exploration capabilities. Although methods such as 
scGPT31, GEARS32 and scGen33 can perform in silico perturbations, 
they were not designed to process time-series data and often require 
the experimental screening of cellular response to genetic perturba-
tion as supervision. Even if one were to adopt existing unsupervised 
generative models, such as scVI, for this particular purpose, their 
capacity to simulate interventions is hindered by inadequate incorpo-
ration of disease information. These existing unsupervised generative 
methods are often not disease specific, treating all genes in a similar 
manner across various diseases. Consequently, they often fail to iden-
tify critical genes associated with specific disease progression, which 
hold potential for therapeutics. Furthermore, existing approaches, 
whether supervised or unsupervised, are often generic and fail to 
deliver disease-informed in silico drug screening. This shortcoming 
arises from the lack of information exchange between cell embedding 
learning and gene regulatory network inference underlying disease 
progression. These methods usually cannot feedback the understand-
ing of disease progression (for example, critical genes and regulators 
that modulate disease progression) to improve cellular representation 
(that is, emphasizing critical genes more than others), and vice versa. 
Consequently, there is an unmet need for unsupervised methods that 
can understand disease progression and adapt this comprehension to 
virtually examine thousands of potential drugs and compounds using 
single-cell disease data without relying on ground truth training data. 
The ever-increasing availability of large-scale public drug databases, 
such as the Connectivity Map (CMAP) database34,35, may provide the 
missing link to the unsupervised single-cell in silico drug perturba-
tions. Coupled with this, given the vast pool of drug candidates and 
the intricate cellular dynamics of diseases, an interactive visualization 
tool is important for efficiently probing potential drugs and priming 
them for further experimental validation.

To bridge these gaps, here we introduce UNAGI, a comprehen-
sive unsupervised in silico cellular dynamics and drug screening 
framework. UNAGI deciphers cellular dynamics from human disease 
time-series single-cell data and facilitates in silico drug perturbations 
to earmark therapeutic targets and drugs potentially active against 
complex human diseases. All outputs, from cellular dynamics to drug 
perturbations, are rendered in an interactive visual format within 
the UNAGI framework. Nestled within a deep-learning architecture 
variational autoencoder-generative adversarial network (VAE-GAN), 
UNAGI is tailored to manage diverse data distributions frequently 
arising post-normalization. It also uses disease-informed cell embed-
dings, harnessing crucial gene markers derived from the disease data-
set. On achieving cell embeddings, UNAGI fabricates a graph that 

chronologically links cell clusters across disease grades (reflecting 
changing cellular states during disease progression and quantified 
using patient-derived samples or cells), subsequently deducing the 
gene regulatory network orchestrating these connections. UNAGI 
can leverage time-series data, enabling the characterization of cellular 
dynamics and capture of disease markers and gene regulators. Lastly, 
the deep generative nature of the UNAGI framework facilitates an in 
silico drug perturbation module, simulating drug impacts by manipu-
lating the latent space informed by real drug perturbation data from 
the CMAP database. This allows for an empirical assessment of drug 
efficacy based on cellular shifts towards healthier states following drug 
treatment. The in silico perturbation module can similarly be used to 
investigate therapeutic pathways, using an approach akin to the one 
used in drug perturbation analysis.

We demonstrate UNAGI on a comprehensive single-nuclei RNA-seq 
(snRNA-seq) idiopathic pulmonary fibrosis (IPF) dataset. IPF is a com-
plex lethal lung disease characterized by irreversible lung scarring, 
leading to progressive decline in lung function and death36–38. Present 
therapeutic options for IPF are markedly narrow; two Food and Drug 
Administration (FDA)-approved drugs, pirfenidone39 and nintedanib40, 
that slow lung function decline, but do not reverse fibrosis41. Despite 
their approval, their specific impact on disease progression mecha-
nisms remains unclear40–42. Recent single-cell profiling studies12,15 
highlighted the molecular and cellular diversity of the IPF lung, reveal-
ing extensive changes in lung-resident cells in IPF43. We apply UNAGI 
to the dataset containing single-nuclear sequencing of samples from 
differentially affected lung regions. This approach aims to better under-
stand the changes that lung fibroblasts, key pathogenic cells in fibrosis, 
undergo as fibrosis progresses in the human lung and to potentially 
identify agents that may slow down or reverse these changes. This analy-
sis demonstrates UNAGI’s ability to generate compact low-dimensional 
representations of the dynamic cellular transcriptomic shifts during 
disease progression outperforming existing methods. In addition, we 
conduct proteomics analysis of the same lungs, as well the ex vivo of 
human pulmonary fibrosis using precision-cut lung slices (PCLS)44,45, 
to experimentally confirm the results and predictions of UNAGI. Taken 
together, our findings corroborate UNAGI’s capability not only in 
decoding cellular dynamics and underpinning regulatory networks 
but also in potentially accelerating drug development by spotlighting 
potential therapeutic targets and drug candidates.

Results
Overview of UNAGI conceptual framework
UNAGI, a unified in silico cellular dynamics and drug screening 
framework, is a computational framework that integrates time-series 
single-cell sequencing data with deep-learning techniques to unravel 
cellular dynamics and identify therapeutic interventions against multi-
faceted diseases. This is achieved using the following four components.

(1) UNAGI applies a VAE-GAN to capture cellular information in a 
reduced latent space (Fig. 1a). It processes single-cell data as continu-
ous, zero-inflated log-normal (ZILN) distributions (or other distribu-
tions that well fit the data in other application scenarios) because this 
often better matches the distribution of single-cell data post rigor-
ous preprocessing and normalization (for example, in the IPF data 
used in this study). With a cell-by-gene normalized counts matrix as 
input, a cell graph convolution (GCN) layer is introduced to manage 
the sparse and noisy nature of the data. In particular, the GCN layer 
leverages the structured relationships between cells to mitigate the 
dropout noise common in single-cell data, enhancing the accuracy of 
cellular representations. This data, further refined by a VAE, results 
in lower-dimensional embeddings, with an adversarial discrimina-
tor ensuring the synthetic quality of these representations. (2) After 
embedding, cell populations are identified using the Leiden clustering 
approach and visualized with UMAP. A temporal dynamics graph span-
ning disease grades is then constructed by evaluating cell population 
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similarities during the disease progression, linking them based on 
their likeness (Fig. 1b). Each trajectory within the graph then forms 
the basis for deriving gene regulatory networks using the iDREM 
tool46 (Fig. 1c). (3) An iterative refinement process toggles between 
the embedding and temporal cellular dynamics. During the embedding 
phase, disease-associated genes and regulators (such as transcrip-
tion factors, cofactors and epigenetic modulators) identified from 
the reconstructed temporal cellular dynamics are emphasized. This 
ensures that cell representation learning consistently prioritizes these 

key elements related to disease progression in every iteration. (4) Upon 
reaching predefined stopping criteria, UNAGI then uses in silico per-
turbations to quantify the effectiveness of therapeutic interventions 
(Fig. 1d). Using the trained VAE-GAN generative model, UNAGI simu-
lates cells under various drug treatments or pathway perturbations. 
Each perturbation’s impact is scored and ranked based on its ability to 
shift the diseased cells closer to a healthier cellular state (Fig. 1e). The 
detailed model architecture and training parameters can be found in 
Supplementary Note 1.
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Fig. 2 | UNAGI identifies progressive heterogeneous cell populations across 
tissue fibrosis grades in IPF. a, UMAP visualization: stromal cells across various 
tissue fibrosis grades in IPF are depicted. Each point corresponds to a cell; the 
first column categorizes them by cell type (for example, SMC, smooth muscle 
cell; VE, vascular endothelial), and the second by Leiden cluster IDs. b, Gene 
dot plots: dot plots illustrate the key biomarkers for each identified cell type 

across four grades of fibrosis involvement in IPF. In these plots, the size of each 
circle indicates the proportion of cells expressing the gene, and the circle’s 
colour reflects the level of normalized gene expression. c, Cell composition 
chart: a visualization of the shifts in cell-type composition along with IPF disease 
progression. Colours indicate the specific cell type. Notably, there is a discernible 
expansion of fibroblast cells as the disease progresses.
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Binning IPF samples into tissue fibrosis grades based on the 
alveolar surface density
A true longitudinal profiling of the lung cells from the same patient with 
different grades of tissue involvement in fibrosis is impossible because 
patients are never biopsied more than once. Cells or micro-dissected 
regions from the same clinical stage can vary substantially in their 
actual cellular states and grades of tissue involvement in fibrosis47. 
Thus, to investigate the cellular dynamics along the progression of 
human IPF tissues, we used a widely adopted validated strategy that 
analyses samples from variably affected regions of the IPF lung to assess 
histological fibrosis progression47–55. The justification for this strat-
egy is that IPF does not progress randomly; rather, it stereotypically 
advances from the lung periphery to the centre, and from the lower 
lung zones to the upper lung zones56. This approach has been vali-
dated extensively49–53,55,57. Therefore, cells from differentially affected 
regions could be assumed to represent different fibrosis grades in 
disease progression. To build the surrogate ‘longitudinal’ single-cell 
data, here we used a Gaussian density estimator (Supplementary Note 2)  
to classify all samples (and thus all cells) into different grades of tis-
sue involvement in fibrosis (tissue fibrosis grades), measured by 
the alveolar surface density, a previously validated measure of lung 
fibrosis47,50,53 (Extended Data Fig. 1a,b). The model learns the best num-
ber of tissue-fibrosis-grade bins in the IPF tissue and the associated 
Gaussian parameters (mean and standard deviation) for each bin. We 
analysed a total of 54 lung region samples from 19 patients, binning 
them into 4 tissue fibrosis grades based on the extent of tissue fibrosis 
as reflected by surface density—none (control), mild, intermediate and 
advanced—based on the surface density. The fibrosis-related pathway 
enrichment scores and the expression changes of fibrotic markers such 
as COL1A158, LTBP159, LTBP260, FGF261, IGF162 and SMAD363 (Extended Data 
Fig. 2) show a clear trend of increasing tissue fibrosis grades in IPF. This 
four-tissue fibrosis grade binning has been previously validated47,49,50,52. 
Following the density estimation analysis, we assigned samples and 
cells to these four tissue fibrosis grades (Extended Data Fig. 1c). Specifi-
cally, 30 samples from 10 patients were categorized as none/control 
(135,509 cells). Seven samples from 5 patients were classified as mild 
(41,949 cells). Intermediate included 7 samples (31,512 cells) from 5 
patients, while advanced comprised 10 samples (22,507 cells) from 
6 patients (Extended Data Fig. 1d). As shown in Extended Data Fig. 1e, 
there is a discernible increase in stromal cells starting from mild, hinting 
at a possible rise in fibroblasts from this tissue fibrosis grade onwards.

UNAGI identifies varying stromal cell populations across IPF 
progression
After applying UNAGI to the IPF snRNA-seq dataset and performing clus-
tering and visualization on the latent space, we explored the shifts and 
changes in stromal cell populations using UNAGI. The average adjusted 
Rand index (ARI) and normalized mutual information (NMI) were both 
0.74 for all tissue fibrosis grades. UNAGI identified 11 distinct cell types 
in controls, with more emerging in subsequent tissue fibrosis grades 
(Fig. 2a), which we annotated based on the expression of canonical 
cell markers (Fig. 2b and independent manual cell-type annotations 
in Supplementary Fig. 1). UNAGI can capture cell subpopulations, such 
as fibrotic fibroblasts and airway fibroblast cells, suggesting extended 
fibrosis through the progression. UNAGI uncovered differences in cel-
lular heterogeneity: smooth muscle cells (SMC; marked by ZNF385D 
and PRUNE2) and alveolar pericyte cells (characterized by ADARB2 and 
LRRTM4) were predominantly homogeneous. By contrast, fibroblast cell 
populations showed greater heterogeneity, within both alveolar (denoted 
by ROBO2 and SLIT264) and adventitial fibroblasts. Fibroblast proportions 
largely increase in IPF compared with controls—from less than 15% to more 
than 40%—validating that fibroblast accumulation is a hallmark of IPF 
progression65 (Fig. 2c). The alveolar fibroblast cell population exhibits 
the most substantial increase, while the fibrotic fibroblast archetype 
appeared only in subsequent tissue fibrosis grades. The proportion of 

vascular endothelial cells consistently decreases as IPF progresses. The 
cell embeddings from IPF data reveal progressive shifts in cell popula-
tions across tissue fibrosis grades in IPF, which serve as a foundation for 
constructing a temporal dynamic graph depicting disease progression.

UNAGI reconstructs temporal dynamics and gene regulatory 
networks in disease progression
UNAGI reconstructs the cellular dynamics associated with time-series 
or disease progression data based on the cell embeddings learned by 
the model. Within our analytical framework, a ‘track’ delineates a dis-
tinct trajectory within the reconstructed dynamics graph, marking 
the sequential cellular state transitions corresponding to specific cell 
clusters or populations. These tracks not only identify pathways but 
also chronicle the journey of cellular progression and evolution. Within 
stromal cells, we have discerned ten distinct progression tracks (Fig. 3a), 
transitioning from the control to advanced tissue fibrosis grade. Because 
of the established role of fibroblasts in pulmonary fibrosis58,66,67, we 
focused on two tracks that delineate fibroblast progression in human 
IPF. FibAlv-4 traces the cellular state shifts of alveolar fibroblast cells 
during IPF progression, while FibAdv-17 illustrates the cellular dynam-
ics of adventitial, airway and fibrotic fibroblasts. Of note, the fibroblast 
tracks in the dynamics graph contain multiple branches, potentially 
reflecting the multifaceted roles of fibroblast cells in fibrosis68.

The gene regulatory network of FibAlv-4, as reconstructed by 
UNAGI, highlights the central role of gene regulators CTCF, RAD21, 
SMC3 and especially fibrosis-promoting EP30069,70. This is further 
supported by the genes in path A of the FibAlv-4 track, which include 
recognized fibrosis biomarkers such as LTBP1 and LTBP260,71 (Fig. 3b). 
Pathways enriched in track FibAlv-4 include the following: in path A, 
collagen and extracellular matrix (ECM) pathways72; in path B, the 
PI3K-Akt-mTOR signalling pathway and the focal adhesion pathway 
(both are important in lung fibrosis)73–75 (Fig. 3b); and in path C, SLIT/
Robo signalling pathway, less studied but with a potential role in regula-
tion of fibrosis64,76. UNAGI also uncovered pathways that are implicated 
in fibrosis but have not been firmly established as contributors to IPF 
development, such as NCAM1 interactions77,78.

The FibAdv-17 track highlights the contribution of adventitial 
fibroblasts to matrix remodelling. Enriched pathways encompass 
general ECM-related pathways, including the ones of collagen forma-
tion, organization, trimerization and degradation, with some variation 
between paths A and C (Fig. 3c). The MET-activated PTK2 signalling 
pathway79, a substantial player in pulmonary fibrosis progression, is 
also highlighted. The genes in path B, including KCNMA180, NPAS281, 
ITGA882 and DIO283, have all been associated with IPF. The depth and 
precision of the reconstructed gene regulatory network are under-
scored by its ability to pinpoint not only pivotal gene regulators and 
pathways but also the target genes that they regulate. These target 
genes, especially those that exhibit differential expression across tis-
sue fibrosis grades, provide insights into the temporal dynamics of IPF 
progression. In the context of the FibAlv-4 track, the method identifies 
both COL3A1 and SERPINE1, which are induced by the transforming 
growth factor-β (TGFβ) pathway84 and are hallmarks of the IPF lung85. 
Moreover, it identifies less-studied fibrotic marker candidates such 
as DCLK1, TENM3, TENM2, ADRA1A and GRIA1, which have also been 
implicated in pulmonary fibrosis86–89 (Fig. 3d).

Taken together, UNAGI’s full-spectrum discover y of 
well-established as well as less-known, but still associated, gene regu-
lators, pathways and their target genes underscores the method’s 
robustness in unravelling the intricate molecular interplay underlying 
the IPF progression.

UNAGI discovers dynamical and hierarchical static markers 
across disease grades
Conventional single-cell analysis primarily identifies differentially 
expressed markers between healthy and diseased cells. By contrast, we 
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developed UNAGI to identify dynamic marker genes that offer a longi-
tudinal profile of cellular state changes throughout IPF progression. 
It discerns dynamic markers for individual cell populations, tracing 
gene expression shifts across disease grades. All identified candidate 

biomarker genes from the temporal gene regulatory network for 
each track are subjected to a permutation test to assess their statisti-
cal significance. This test involves randomly shuffling cells from the 
track across various grades to establish a background distribution for 
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Fig. 3 | UNAGI reconstructs the temporal dynamics and the underlying gene 
regulatory networks of cellular dynamics during IPF progression. a, Dynamics 
graph of IPF progression within the stromal cell lineage, comprising four tissue 
fibrosis grades. Each node symbolizes a cell population, coloured according to 
cell type, and the edges between two nodes depict the progression trajectory 
across tissue fibrosis grades. Tracks (trajectories), spanning from control to 
advanced, are named with the specific cell type and the corresponding control 
cluster ID. b, Gene regulatory networks for the FibAlv-4 track were reconstructed 
using the iDREM tool. Individual nodes signify a set of genes, and edges 

connecting two nodes represent gene regulators regulating expression changes. 
Paths encompassing nodes from control to advanced depict a consistent set 
of genes showing the same expression changes throughout IPF progression. 
The enriched pathways associated with gene paths were also provided. c, The 
temporal regulatory networks for the FibAdv-17 track. d, Line chart of expression 
of the top dynamic gene candidates on the FibAlv-4 and FibAdv-17 tracks, 
the top 10 most increasing and the top 10 most decreasing candidate marker 
genes through the IPF progression. We applied FDR correction in b using the 
Benjamini–Hochberg (BH) procedure.
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comparative analysis. Candidate genes that are deemed statistically 
significant through this test are considered as dynamic markers, closely 
associated with the track in the analysis (as detailed in the ‘Dynamic and 
hierarchical static markers discovery’ section of Methods).

Figure 4a shows heat maps of the top 5 dynamic markers for each 
track, both those that increase and decrease during disease progres-
sion (a comprehensive list is available in Supplementary Table 1). For 
instance, in the FibAdv-17 track, markers such as LUZP2, ITGBL1 and 

AOX1, previously reported as differentially expressed in IPF90, are high-
lighted. Notably, NLGN1, GFRA1 and AOX1 are markers for adventitial 
fibroblasts11 and emerge as a top-decreasing temporal dynamic marker 
in this track, suggestive of a loss of respective cell identity. The FibAlv-4 
track, however, features markers such as DCLK1, TENM3, ADRA1A, GRIA1 
and EPHA3, all of which have strong ties to lung fibrosis86–89,91. Some 
of them are also differentially expressed in all cells during disease 
progression (Supplementary Fig. 2). It is important to mention that 
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Fig. 4 | UNAGI comprehensively discovers dynamical and hierarchical static 
markers across various tissue fibrosis grades in IPF. a, Heat maps of top 
increasing and decreasing temporal dynamic markers, z-score normalized. b, 
Heat maps of dynamic gene markers (left) and protein expressions (right) from 
the FibAlv-4 cluster, with line plots showing gene expression shifts during IPF 
progression. c, Dendrogram visualizing control cell populations. Each node 
signifies a cell-type-specific population. The fibroblast adventitial cluster is 

accentuated. Using UNAGI, various hierarchical biomarkers are discernible 
at different levels, either contrasting with other cell types or juxtaposing 
subpopulations within the same cell type. d, Heat map of top 25 hierarchical 
static markers in the fibroblast adventitial cluster at level 0, showing general 
cell-type markers. e, Heat map of top 25 hierarchical markers in the fibroblast 
adventitial cluster at level 4, compared with two fibroblast alveolar clusters, 
showing cell subtype markers.
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while our discussion primarily focused on monotonically increasing 
and decreasing biomarkers, which are of main interest in our study, 
our model can also identify biomarker genes with other patterns. An 
example of this is genes that initially increase and then decrease, as 
observed in path B of the FibAdv-17 track.

A common limitation of single-cell transcriptomic data is that it 
only reflects transcript levels. To validate the markers discovered by 
UNAGI, we used proteomics data, demonstrating gene–protein over-
laps and corroborating our transcript-level findings. We performed 
proteomics of 30 matched tissue blocks from 10 IPF samples, with 3 
samples each across different tissue fibrosis grades (based on the same 
surface density criteria), and 10 control donors, with 1 sample each 
(Supplementary Table 2). We identified 886 dynamic proteins, with 120 
overlapping with our single-cell data (out of 2,484 genes). This overlap 
is significant and much higher than expected by chance (chi-square test 
P value = 9.354 × 10−18). There are 40 out of 120 dynamic markers that 
overlap with dynamic proteins. Hypergeometric testing on individual 
tracks revealed statistical significance for protein-coding genes of 
dynamic proteins in four specific tracks (Supplementary Fig. 3).

A reassuring observation from our snRNA-seq and proteomics 
data was again the combination of the identification of well-known 
and validated molecules, with molecules that have been implicated 
but not deeply studied in fibrosis. The FibAlv-4 track notably contained 
137 dynamic protein-encoding genes, with 14 of these genes produc-
ing dynamic proteins (Fig. 4b). Among these overlapping dynamic 
markers, five relate to collagens (COL1A1, COL1A2, COL3A1, COL6A6 
and COL14A1), confirming that progressive matrix remodelling is 
intrinsically linked to the development of fibrosis92. Besides, many 
other overlapping dynamic markers have been previously associated 
with pulmonary fibrosis in computational analysis of bulk RNA-seq93 
or mechanistic studies94–96. Beyond these well-established IPF mark-
ers, UNAGI also uncovers markers such as ROBO1, ROBO264 and 
GLI297, which have not been firmly linked to IPF but warrant further 
investigation.

UNAGI can identify both dynamic and static markers. While 
dynamic markers offer insights into cellular state changes through-
out disease progression, static markers are crucial for distinguishing 
between different cell types and subpopulations within a given tissue 
fibrosis grade. Existing static biomarker discovery pipelines16,17 usu-
ally use a ‘one versus the rest’ strategy and may fail to distinguish the 
difference between different subtypes.

UNAGI explores the hierarchies of marker genes that not only dis-
tinguish different cell populations but also capture the heterogeneity 
among cell subpopulations. For instance, focusing on the FibAdv-17 
cluster of controls, cell subpopulations are primarily divided into three 
main groups: fibroblasts, vascular endothelial cells and lymphatic 
endothelial cells (Fig. 4c and dendrograms of all four tissue fibrosis 
grades are in Supplementary Fig. 4). The fibroblast adventitial popu-
lation spans five levels in the dendrogram. Figure 4d shows the top 25 
positive hierarchical static markers for fibroblast adventitial cells at 
dendrogram level 0. These markers distinguish the fibroblast adven-
titial cluster from all other clusters. UNAGI’s results are consistent with 
the dendrogram structure, indicating the close relationship between 
fibroblast adventitial and fibroblast alveolar clusters. Notably, UNAGI 
identified key markers such as IGF1 and collagen-encoded genes such 
as COL24A1 and COL7A1, emphasizing the role of elevated interstitial 
collagen levels in IPF98. Other markers such as ANGPTL499 and WT1 
further demonstrate the method’s precision in identifying relevant 
genes100 (top 25 level 0 positive and negative markers are detailed in 
Supplementary Fig. 5).

Figure 4e presents the top 25 positive hierarchical static markers 
for the fibroblast adventitial cluster at level 4 (subtype level). While 
there are some markers overlapped with level 0 markers, level 4 intro-
duces unique markers potentially for subtypes such as NLGN1 and 
MFAP5, and they are cell-type markers for adventitial fibroblasts11,101,102 

(top 25 level 4 positive and negative markers are detailed in Supplemen-
tary Fig. 6). UNAGI’s ability to identify both temporal dynamic markers 
and hierarchical static markers offers a dual approach for detailed 
profiling of the disease from both intra-disease grade and longitudinal 
(inter-disease grade) perspectives, enhancing our understanding of 
its complexities.

UNAGI identifies potential therapeutic pathways for IPF 
treatments
In the preceding sections, we described how UNAGI enhances our com-
prehension of biomarkers and cellular dynamics in the progression of 
IPF. Building upon this foundational understanding, we now shift our 
focus to the therapeutic frontiers opened by UNAGI. This involves 
leveraging its in silico perturbation capabilities, which are rooted in 
diseased-informed cell embeddings and the temporal dynamics of the 
disease. This approach facilitates the identification of potential thera-
peutic targets and pathways, which may contribute to advancements 
in IPF treatment. Detailed results of these pathway perturbations are 
systematically presented in Supplementary Table 3.

UNAGI provides a full spectrum of pathway perturbation results, 
ranging from well-established pathways to unexplored ones. Many 
of the top pathways predicted by UNAGI (Fig. 5a) align with known 
IPF-centric pathways, including pathways associated with TGFβ84,103–105 
and collagen formation98,105. Among the top 10 identified therapeutic 
pathways, UNAGI identifies pathways whose role in IPF is relatively 
less studied such as the Netrin-1 signalling pathway (score = 0.6548, 
false discovery rate (FDR) = 3.4698 × 10−19), which is indicated to be 
mechanistically important in pulmonary fibrosis87,106; signalling by 
ROBO receptors (score = 0.5890, FDR = 1.1028 × 10−14)64,107; and GPCR 
signalling pathways, which are associated with G proteins, known to 
promote fibrosis, and have also generated interest as targets for IPF 
interventions108. Other less-studied pathways in IPF such as the calcium 
signalling pathway may hold important promise in fibrosis109. UNAGI 
also predicts unexplored pathways in IPF, including ion homeostasis 
and the inactivation of CDC42 and RAC1. Although these pathways were 
not previously linked to IPF, they may play a substantial role in IPF pro-
gression. For instance, CDC42 and RAC1, as members of the Rho family 
of small GTPases, are involved in fibroblast activation, suggesting that 
inhibiting these pathways could help mitigate fibrosis110,111.

Figure 5b shows the gene expression of the target genes of Netrin-1 
pathways after perturbation. As can be seen in Fig. 5c, in silico pathway 
perturbations shift cellular states towards healthier conditions. Per-
turbed cell embeddings generated by the graph VAE-GAN model are 
visualized in a principal component analysis (PCA) plot, showing the 
effects of repressing the Netrin-1 signalling pathway across tissue 
fibrosis grades. In the mild fibrosis perturbation, the perturbed cell 
population (P1) is closer to the control (C) than to the mild cells (S1) and 
more distant from advanced cells (S3). The similarity in the embedding 
space is indicated by the thickness and length of connection lines, with 
a thicker and shorter line (LCP1) representing higher similarity between 
control (C) and P1. Overall, shifting the pathway gene expression to 
control drives perturbed cellular states closer to controls and away 
from progressive tissue fibrosis grades (Fig. 5d). These results visually 
demonstrate the ability of UNAGI to simulate and potentially predict 
whether a specific pathway of gene set perturbations can improve 
cellular health—or reduce fibrosis.

UNAGI screens potential drug candidates for IPF treatments
UNAGI’s in silico drug perturbation approach, akin to its pathway per-
turbation, leverages and integrates the CMAP dataset. Comprehen-
sive results of all drug perturbations are detailed in Supplementary 
Table 4. UNAGI also offers a full spectrum of drug candidate predictions, 
from known IPF treatments to compounds with unexplored potential. 
UNAGI’s unsupervised in silico perturbation identified nintedanib 
(score = 0.1102, FDR = 0.0111), which is an FDA-approved drug for IPF, 
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and ifenprodil112 (score = 0.2441, FDR = 2.275 × 10−20), an FDA orphan 
drug for IPF that has completed phase 2 trials (clinicalTrials.gov ID 
NCT04318704). These alignments with known treatments confirm 
UNAGI’s ability in identifying clinically relevant compounds. Some 
top predicted drug candidates that are not yet linked to IPF but have 
potential for further investigation are shown in Fig. 5e and are high-
lighted below.

Apicidin, with a score of 0.5021 and an FDR = 4.551 × 10−105), is a 
histone deacetylase (HDAC) inhibitor used in preclinical research. 
Previous studies have suggested that HDACs may be beneficial in pul-
monary fibrosis, but their study has not progressed beyond the preclini-
cal stage potentially because of safety concerns113,114. Another similar 
HDAC inhibitor, belinostat, was also picked up by UNAGI specifically, 
with no mention with regard to IPF so far. Nifedipine, scoring 0.3834 
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with an FDR = 1.152 × 10−57, is a calcium channel blocker widely used 
with a good safety profile. Despite some early encouraging results 
suggesting that calcium signalling inhibition in murine fibroblasts 
may be anti-fibrotic115, nifedipine has not been studied in humans. Cilo-
milast, a phosphodiesterase 4 (PDE4) inhibitor, has a score of 0.3082 
and an FDR = 4.407 × 10−35. It has demonstrated potential in attenuat-
ing pulmonary fibrosis in mice116. Niguldipine, scoring 0.3842 and an 
FDR = 6.160 × 10−58, is a calcium channel blocker and an α1-adrenergic 
receptor antagonist, showing anti-fibrotic effects in the lung115. The 
compound 8-bromo-cGMP, which impacts PRKG1, has a score of 0.3099 
and an FDR = 1.562 × 10−35, and is associated with the TGFβ pathways in 
the fibrosis process117. Other drugs, including ibudilast (score = 0.3053, 
FDR = 2.465 × 10−34) and topiramate (score = 0.3203, FDR = 2.411 × 10−38), 
have been identified, with the former potentially having anti-fibrotic 
effects similar to other PDE4 inhibitors118, and the latter regulating 
GRIA1, which is associated with lung fibrotic diseases86,119. Of note, a sim-
ilar selective PDE4B inhibitor, nerandomilast, is currently evaluated in 
a phase 3 trial in patients with IPF (clinicalTrials.gov ID NCT05321069). 
Myricitrin (score = 0.2045, FDR = 2.590 × 10−13) has been shown to 
exhibit anti-fibrotic activity in certain conditions120, while regorafenib 
(score = 0.1407, FDR = 2.653 × 10−5) attenuates fibrosis by inhibiting 
the TGFβ pathway121. Furthermore, UNAGI also identified compounds 
with yet no established connection to IPF, such as eliprodil, an NMDA 
receptor antagonist122, worth further exploration.

The target gene intervention of nintedanib is shown in Fig. 5f. The 
corresponding perturbation results, visualized in Supplementary Fig. 7 
across tissue fibrosis grades (mild–advanced), emphasize the potential 
of these drugs to shift cell populations towards healthier tissue fibrosis 
grades. The consistently higher PAGA connectivity scores between 
perturbed cell populations and healthier cellular tissue fibrosis grades 
indicate that the perturbed cell populations are more akin to healthier 
cells. Overall, UNAGI’s efficacious drug candidates (those that received 
significant FDR values) consistently surpass the therapeutic scores of 
random perturbations (Fig. 5g). These results were congruent with the 
outcomes from sanity drug perturbations (see Supplementary Note 3 
for sanity drug perturbation method), during which we intentionally 
manipulated target gene expressions to the adjacent, healthier tissue 
fibrosis grades.

Experimental validation of in silico drug perturbations via 
PCLS
To experimentally validate UNAGI predictions, we utilized a transla-
tional ex vivo fibrosis model—in which human PCLS are exposed to 
a fibrotic cocktail123. We tested the model predictions for nifedipine 
and nintedanib. PCLS were treated for 5 days with a control cocktail 
(CC) including all vehicles or a pro-fibrotic cocktail (FC) previously 
described123,124. Nifedipine and nintedanib of vehicle control treatment 
started on day 3 until day 5.

As read-out, we performed snRNA-seq. When assessed based on 
experimental conditions, cells under both nifedipine and nintedanib 
treatments exhibit similar latent representations on the UMAP. This 
suggests their parallel roles in inhibiting fibroblast activation (Fig. 6a). 
Utilizing UNAGI’s perturbation module, nintedanib and nifedipine in 
silico perturbed cells gravitate towards the nintedanib-treated popu-
lation, demonstrating potential therapeutic effects (Fig. 6b). Pairwise 
Euclidean distances between latent embeddings indicate that both 
treatments effectively steer the cellular state of fibrosis cells toward 
a healthier baseline (Fig. 6c) and the in silico treatments behave as 
real treatments (Fig. 6d). This observation is evidenced by the Mann–
Whitney U test confirming the analogous anti-fibrotic properties of 
both treatments. The rank–rank hypergeometric overlap (RRHO) 
confirms that the markers identified in silico closely align with the 
biomarkers observed in the PCLS experiments (Fig. 6e). The adjusted R2 
scores for nintedanib in silico (0.898, P = 1.222 × 10−49) and nifedipine in 
silico (0.889, P = 1.665 × 10−48) with respect to the top 100 differentially 

expressed genes (DEGs) in actual treatment versus fibrosis, as well 
as the top 25 markers in side-by-side comparisons (Fig. 6f; top 100 
DEGs comparisons are detailed in Supplementary Fig. 8), demonstrate 
the consistency of gene expression patterns between in silico and 
real treatment markers. Known IPF markers such as IL33125, ADAM12126 
and CXCL8127 exhibit similar changes in gene expression in both real 
treatment experiments and in silico predictions. The R2 scores and 
side-by-side comparisons of real treatments and in silico gene expres-
sion of the ECM organization pathway further validate the capability 
of the UNAGI model to accurately simulate in silico perturbations on 
IPF-related targets (Fig. 6g; all ECM organization pathway genes com-
parisons are listed in Supplementary Fig. 9). The alignment between 
in silico drug perturbations and actual drug treatments on the PCLS 
demonstrates the reliability of UNAGI.

UNAGI unveils COVID-19 cellular dynamics and therapeutic 
opportunities
To demonstrate the expansive applicability of UNAGI to various com-
plex diseases, we studied the temporal dynamics of coronavirus disease 
2019 (COVID-19). We used a subset of a COVID-19 dataset128 consist-
ing of 246,948 peripheral blood mononuclear cells (PBMCs) from 47 
age-matched patients with various severities of COVID-19. We catego-
rized them into four COVID-19 stages based on the disease severity of 
patients: healthy (control, or stage 0), asymptomatic or mild (stage 1), 
moderate (stage 2) and severe or critical (stage 3). We independently 
trained the UNAGI framework from scratch on the COVID-19 dataset to 
reveal temporal dynamics in COVID-19 disease progression and screen 
potential therapeutic targets.

After learning the latent cell representations (Extended Data 
Fig. 3), UNAGI identified 14 unique cell populations at stage 2 (Fig. 7a). 
This spotlights potential biological associations, such as those between 
platelets and T cells, which align with previous research128. Here UNAGI 
can elucidate cell-type markers for cell populations, such as MS4A1 
and CD79A in B cells, and underscore differential expressions, notably 
CD8A and CD8B, in CD8 T cells—findings that harmonize with manual 
annotations (Fig. 7b).

Focusing on the cellular dynamics across the trajectory of COVID-
19, UNAGI identified seven distinctive tracks reflecting the evolving 
cellular interplay across COVID-19 severity levels (Fig. 7c). Figure 7d 
adds detail by highlighting key genes involved in the progression of 
the COVID-19 in CD16+ monocytes, such as BHLHE40, which finds an 
upregulation in moderate patients129, and EGR1, recognized for influ-
encing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
replication and antiviral responses130. Notably, genes such as GRN131 and 
PLAC8132 emerge as upregulated in COVID-19. Gene enrichment analyses 
further discern crucial pathways tied to the disease such as interferon 
signalling and immune system pathways133–135. Transitioning to predic-
tive capabilities, UNAGI identified potential therapeutic pathways such 
as the RHO GTPases Activate NADPH Oxidases pathway, which aligns 
with modern findings emphasizing its substantial role in COVID-19136,137 
(Fig. 7e). A deep dive into pathways related to Toll-like receptors and 
interferon responses138 further broadens the therapeutic landscape.

Figure 7f shows the in silico drug perturbation results predicted by 
UNAGI. Aloxistatin stands out, achieving the highest drug perturbation 
scores and drawing attention owing to its potential against SARS-CoV-2 
proteases139. In addition, didanosine, notable for its efficacy against 
COVID-19 polymerase and exonuclease140, and ponatinib are recog-
nized as potent COVID-19 drugs by other machine learning methods141, 
aligning with several other recent published studies139–143.

UNAGI enhances cell embedding and disease dynamics 
understanding
To demonstrate UNAGI’s advantages over existing methods in under-
standing the dynamics of diseases, we benchmarked it against estab-
lished methods, including scVI19, GraphSCC22, scGEN33, scGGAN20, 
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scGPT31, Geneformer144, scGNN21, Seurat16 and SCANPY17, on the IPF 
dataset and scRNA COVID-19 PBMC data128. To present a comprehensive 
benchmarking, we conducted evaluations on various tasks: (1) generat-
ing cell embeddings, (2) computing efficiency, (3) identifying disease 
markers and (4) identifying disease-associated pathways. Supplemen-
tary Table 5 summarizes the functionality and ranks performance of 
these benchmarked methods across key tasks.

Cell embedding benchmarking. To evaluate the capability to gener-
ate disease-informed cell embeddings, we compared the quality of 
embeddings generated by different methods through various bio-
logical conservation metrics suggested by Luecken et al.145. UNAGI 
consistently outperformed existing single-cell analysis methods on the 
IPF dataset over various benchmarks, except for the silhouette score 
(Fig. 8a–j). Although scGGAN achieved the highest silhouette score, it 
fell short on metrics related to cell-type specificity, illustrating that its 

embeddings do not adequately capture the underlying biological vari-
ation (Supplementary Fig. 10). UNAGI outperformed other methods in 
generating cell-type distinct embeddings. This was evidenced by the 
highest cell-type-associated metrics, including a 5.15% higher ARI, a 
4.30% higher cell-type average silhouette width (ASW) and a 2.97% 
higher NMI, compared with the second-best methods. scGNN can only 
work on downsampled datasets because of its memory-hungry features 
(Extended Data Fig. 4a) and our experiments comparing UNAGI and 
scGNN with the same 25% downsampled dataset setting suggested that 
scGNN’s inadequate performance was not a bias caused by the reduced 
data size (Supplementary Fig. 11). scGPT and Geneformer pretrained 
on large-scale single-cell dataset and fine-tuned on the IPF dataset 
can achieve the joint second-best overall performance. Our compre-
hensive benchmarking also demonstrates that UNAGI outperforms 
these foundation models in both zero-shot and fine-tuning settings 
(Supplementary Fig. 12). The results of SCANPY using the standardized 
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Fig. 7 | UNAGI in silico analysis unveils COVID-19 cellular dynamics and 
therapeutic opportunities. a, UMAP display of stage 2 COVID-19 data with 
each dot symbolizing an individual cell. Cells are colour-coded based on their 
respective cell types. b, Dot plot illustrating the expression levels of canonical 
cell-type markers present within the stage 2 COVID-19 dataset. c, Dynamic 
graphs representing cellular dynamics underlying the COVID-19 progression. 
Within these graphs, each node corresponds to a cell cluster, and the connecting 
edges signify the relationships between these nodes (shift of the cell population 
along with COVID-19 progression). d, Depiction of the reconstructed gene 

regulatory network for track 12-CD16. Prominent gene regulators, genes and 
pathways discerned from the enrichment analysis are enumerated. e, Bar chart 
detailing the principal pathway perturbation outcomes. Pathways highlighted 
have literature support, indicating their potential as therapeutic targets against 
COVID-19. f, Bar chart outlining the top 10 drug perturbation results. Drugs that 
are emphasized have been highlighted based on literature support, suggesting 
their candidacy for treating COVID-19. We applied FDR correction in d using the 
BH procedure. Asterisks denote statistical significance as follows: *0.01 < FDR < 
0.05; ***1 × 10−4 < FDR < 1 × 10−3; ****FDR < 1 × 10−4.
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single-cell analysis pipeline on raw data without preprocessing (w.o. 
preprocessing) strength the need to perform rigorous data cleaning 
and normalization for analysing the complex single-cell data. The 
UMAP visualizations of the benchmarking methods applied to the IPF 
dataset are presented in Supplementary Fig. 13. However, the COVID-19 
data is less noisy and complex, and better fits a zero-inflated negative 
binomial (ZINB) distribution. In general, UNAGI achieved similar or 
better performance compared with existing methods (Extended Data 
Fig. 5). Besides achieving high performance in ARI, NMI and label scores 
like other methods, it surpasses them by achieving a 2.75% higher 
cell-type ASW and a 2.81% higher isolated label silhouette score. The 

benchmarking results of embedding quality highlighted that UNAGI 
can generate more disease-informed cell embeddings than existing 
methods. Besides the high performance, UNAGI is also computation 
efficient and strikes a balance between memory demands and execu-
tion time in large-scale single-cell datasets compared with bench-
marked methods (Extended Data Fig. 4a,b).

Disease marker and disease-associated pathway identification 
benchmarking. Beyond better cell embeddings, UNAGI also outper-
forms benchmarking methods in identifying disease-associated mark-
ers and pathways. This is attributed to the learned disease-informative 
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embeddings and the iterative training strategy, which emphasizes 
disease markers during optimization. Figure 8k shows that UNAGI’s 
disease markers have stronger agreement with proteomics markers in 
the fibroblast cells. Besides the diminished embedding quality relative 
to UNAGI, the existing techniques were not equipped with iterative 
training and often not consider the longitudinal disease progression 
information during the optimization process. This is due to the insuf-
ficient information exchange between cell embedding learning and 
gene regulatory network inference. Consequently, their comprehen-
sion of the disease’s advancement cannot match that of UNAGI. In 
addition, through benchmarking UNAGI with existing methods on 
disease-associated pathway discovery tasks, we demonstrated that 
UNAGI can better reveal the biological process underlying the develop-
ment of disease. Similar to the dynamic marker discovery, UNAGI con-
sistently outperforms existing methods by achieving more significant 
FDR for the detection of disease-associated pathways (Fig. 8l). Notably, 
UNAGI stands out for its ability to detect the lung fibrosis pathway 
from the alveolar fibroblast track, something that other methods 
struggle with.

UNAGI outperforms existing methods in unsupervised in silico 
drug perturbation
The UNAGI framework’s nonlinear nature and its capability to under-
stand the temporal gene regulatory networks (GRNs) of the disease 
progression help it surpass other methods in performing the in silico 
drug perturbation. We conducted benchmarking experiments on (1) in 
silico drug screening and (2) post-treatment gene expression changes 
prediction tasks to show that UNAGI outperforms existing methods in 
the unsupervised in silico drug perturbation.

In silico drug screening benchmarking. We benchmarked UNAGI 
against scGPT, Geneformer, scVI and scGEN, and directly calculated 
the shifts in the gene space (denoted as ‘Original’) on the in silico drug 
screening task using simulation data. These benchmarked methods 
do not natively support unsupervised in silico drug screening, so we 
integrated them into the UNAGI framework to enable this functional-
ity and facilitate a comparative analysis. To conduct the simulation 
study, we created positive and negative simulation datasets using 25 
drugs with the lowest target gene expressions. This involved shuffling 
the gene expression of individual tissue fibrosis grades and adding 
signals or random noise to the targets of one simulated drug in fibro-
blast cells. We then performed in silico perturbation of the implanted 
drugs using pre-trained models on the simulation datasets to obtain 
perturbed cell embeddings and calculate the perturbation score. 
The FDR-BH (Benjamini–Hochberg) of the perturbation score was 
calculated against the distribution of random perturbation scores to 
determine whether the models could identify the implanted drugs 
(see ‘In silico drug screening simulation’ in Methods). UNAGI obtained 
an area under the receiver operating characteristic curve (AUROC) of 
0.945 and an area under the precision-recall curve (AUPRC) of 0.937, 
3.6% and 6.7% higher than the second-best method (Fig. 8m,n). The 
performance of linear methods ‘Original’ (AUROC of 0.487 and AUPRC 
of 0.504) is close to random and far below UNAGI’s performance. 
The poor performance of linear methods is caused by overlooking 
the downstream effects of GRNs and lacking understanding of criti-
cal genes underlying disease progression. Nonlinear methods scVI 
(AUROC, 0.774; AUPRC, 0.704) and scGEN (AUROC, 0.854; AUPRC, 
0.845) performed much better than linear methods; they still fall short 
of matching UNAGI’s performance owing to a lack of understanding 
of the disease progression mechanisms. We further benchmarked 
UNAGI with single-cell foundation models, scGPT and Geneformer, 
in in silico drug screening tasks using both zero-shot and fine-tuned 
settings. We found that fine-tuning on the IPF dataset indeed improved 
their performance compared with zero-shot settings (Supplemen-
tary Fig. 14). However, UNAGI still achieved higher performance in 

the in silico drug screening task (AUROC of 0.945, AUPRC of 0.937) 
compared with fine-tuned scGPT (AUROC 0.909, AUPRC 0.870) and 
Geneformer (AUROC 0.920, AUPRC 0.862) on the IPF dataset. The 
improved performance of UNAGI can be attributed to its nonlinear 
nature to simulate the downstream effects of GRN in the perturbation 
and the iterative training strategy to improve the power of nonlinear 
layers by providing a better understanding of the GRN underlying the 
disease progression mechanism.

In silico post-treatment prediction benchmarking. Moreover, we 
conducted a benchmark of UNAGI against scGPT, scGEN and scVI 
for predicting gene expression changes after treatments using the 
snRNA-seq PCLS dataset (Fig. 8o). We also directly modified the gene 
expression of the top treatment markers (‘Original’) as the baseline 
to evaluate UNAGI. We trained UNAGI, scVI and scGEN on the control 
and fibrosis cells, and perturbed the top 10 nifedipine and nintedanib 
treatment markers (that is, DEGs after ex vivo treatments) to predict 
the outcome of ex vivo treatments. To predict the post-treatment gene 
expression, the decoder of UNAGI can map the perturbed cell embed-
dings to the gene space. Note that the above three methods (UNAGI, 
scVI and scGEN) were run in an unsupervised manner to predict gene 
expression changes after treatment and were not exposed to the 
actual post-treatment single-cell data from the ex vivo experiments. 
By contrast, the fine-tuning for the scGPT method was conducted with 
supervision using the fibrosis cells and drug-treated cells because 
training its perturbation module requires cells before and after inter-
vention. We split the data into training and testing sets and fine-tuned 
the method on the training set. To predict the post-treatment gene 
expression, we applied the fine-tuned scGPT model on the testing set 
and perturbed the top 10 nintedanib or nifedipine treatment markers. 
Directly modifying the gene expression of the top 10 disease mark-
ers (‘Original’) does not enable accurate prediction of perturbation 
outcomes. Compared with ‘Original’, UNAGI’s Pearson correlation 
improves 34.4% in the nifedipine treatment prediction and 60.3% in 
the nintedanib treatment prediction. Compared with scVI and scGEN, 
UNAGI can more accurately predict the outcome of the top 100 ex vivo 
treatment markers. UNAGI achieved 6.99% and 9.03% improvements in 
the Pearson correlation of nifedipine and nintedanib treatment marker 
predictions compared with other unsupervised methods, respec-
tively. Furthermore, UNAGI even outperformed scGPT, the supervised 
perturbation prediction method, with a margin of 2.29% and 11.7% in 
these two treatments, respectively. The improved performance can 
be attributed to the gene-weight mechanism and the iterative training 
strategy. Supplementary Fig. 15a shows that treatment markers were 
assigned higher weights in UNAGI, while they were treated equally 
with other less important genes in other benchmarked methods. For 
instance, the median gene weight of the top 100 nifedipine treatment 
markers is the 81st percentile of all genes’ weights in UNAGI. The 
pathway enriched in the top 100 weighted genes is closely associated 
with the development of lung fibrosis, including the TGFβ signalling 
pathway, elastic fibre formation and ECM organization (Supplemen-
tary Fig. 15b). Through the analysis of the bio-conservation of highly 
weighted genes, we demonstrated UNAGI’s ability in understanding 
the temporal GRN of disease progression mechanisms. As a result, 
UNAGI enables more precise predictions of post-treatment gene 
expression.

Evaluation of the contribution of UNAGI’s modules through 
ablations
We performed a comprehensive analysis using IPF (Extended Data 
Fig. 6) and COVID-19 (Extended Data Fig. 7) datasets to investigate 
the impact of individual components on the performance of UNAGI. 
The ablation study was conducted in the following three aspects: (1) 
embedding quality, (2) cell generation and (3) disease marker and 
disease-associated pathway identification.
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Embedding quality. In terms of the embedding quality, the largest 
contribution comes from the GCN layers (Extended Data Figs. 6a–j and 
7a–j). GCN consistently improves the performance by at least 3.69% 
across various metrics, including ARI, NMI, label score, silhouette score, 
cell-type ASW and SCIB (single-cell integration benchmarking) overall 
bio-conservation score145. Compared with using ZINB distribution, the 
common practice, the results show that the ZILN distribution better 
fits the IPF dataset, thus leading to better embeddings. In addition 
to UNAGI, we demonstrated that ZILN distribution can enhance the 
performance of other methods, such as scVI (Supplementary Fig. 16). 
The iterative training strategy can also further improve the quality of 
IPF cells embedding evidenced by achieving higher ARI, isolated label 
F1 score and isolated label ASW than direct training to the convergence. 
The UMAP visualization of the ablation studies on the IPF dataset is 
shown in Supplementary Fig. 17.

Cell generation. While the GAN component did not necessarily 
improve embedding quality (Extended Data Figs. 6a–j and 7a–j), 
it played a crucial role in guiding the VAE to generate high-quality 
cells. This contribution is evident in the improved Pearson correla-
tion between the PCA embeddings of the original and generated cells 
when using the GAN module compared with UNAGI without (w.o.) GAN, 
which increased by 3.80% in the IPF dataset and 14.57% in the COVID-19 
dataset (Extended Data Figs. 6k and 7k).

Disease marker and disease-associated pathway identification. 
Beyond the cell embeddings and cell generation, we conducted abla-
tion studies to evaluate the impact of individual components on disease 
progression understanding through disease marker discovery and 
disease-associated pathway identification. The ablation studies on 
dynamic marker discovery and fibrosis-associated pathway discovery 
revealed that iterative training is the key factor in understanding the 
disease (Extended Data Fig. 6l,m). Apart from adopting the iterative 
training strategy, all ablation models achieved similar performance 
in the dynamic marker discovery. In the disease-associated pathway 
identification tasks, the GCN layers improve the model’s performance 
by incorporating neighbouring cell information into biological activi-
ties that failed to be captured in the sequencing process.

Discussion
In this paper, we describe UNAGI, a computational tool for modelling 
the temporal cellular dynamics of the complex disease progression. 
UNAGI leverages the graph VAE-GAN model to handle high-dimensional 
single-cell data and extract latent embeddings, crucial for formulating 
progression tracks and reconstructing temporal GRNs. Applied to IPF, 
UNAGI enables high-resolution modelling of cellular trajectories, key 
gene regulators and genes associated with progressive lung fibrosis. 
Through iterative training, it focuses on IPF-specific features, simulating 
and evaluating perturbations on potential target genes and drugs. UNAGI 
provides an in-depth understanding of cellular dynamics and GRNs, 
identifying potential therapeutic pathways and drugs for IPF, showcas-
ing its potential in disease modelling and therapeutic development.

UNAGI differentiates itself from other methods owing to its ability 
to comprehensively model disease progression and identify potential 
therapeutic targets through in silico perturbations. UNAGI offers a suite 
of characteristics that distinguish it in the domain of disease compre-
hension and therapeutic discovery. UNAGI can create disease-focused 
cell embeddings and generate cells using a deep generative neural 
network. This precision enhances cell clustering and identification, 
surpassing existing methods focused primarily on generic cell repre-
sentation learning.

UNAGI unravels the intricate cellular dynamics associated with 
disease progression using the GRN reconstruction module. By gen-
erating cell embeddings, UNAGI constructs a ‘cellular dynamics tree’ 
that maps the transitions of various cell states and populations as the 

disease advances. This approach incorporates key genes, including 
dynamic markers and gene regulators, integral to specific disease 
progression. Consequently, UNAGI identifies underlying GRNs gov-
erning these cellular dynamics, highlighting potential biomarkers 
and therapeutic targets.

Different from other existing methods, the graph VAE-GAN model 
in UNAGI benefits from the causal insights provided by the GRN recon-
struction module, which improves the interpretability of its latent 
space and reconstruction. Toggling between graph VAE-GAN and the 
GRN reconstruction model allows UNAGI to integrate the strengths 
of associative learning and causal inference, leading to more accurate 
disease progression modelling and interpretation.

Finally, UNAGI generates cell embeddings by leveraging its under-
standing of disease progression mechanisms. This enables in silico per-
turbations, unsupervised analysis of pathways and drug perturbations, 
and distinguishes it from existing methods owing to its comprehension 
of disease progression. This allows for the identification of potential 
therapeutic pathways and potential drug candidates without needing 
pre-existing drug perturbation training datasets, which are often dif-
ficult to acquire. Its unsupervised nature enhances applicability and 
practicality across various complex diseases, offering an advantage 
over many current approaches that rely on supervised learning and 
extensive training sets.

UNAGI can yield a full spectrum of outcomes, from well-supported 
findings to unexplored hypotheses. It revealed that stromal cells follow 
specific trajectories during fibrosis progression, notably the marked 
accumulation of fibroblast cells, which correlates with extensive fibro-
sis in IPF, while adventitial and alveolar cells are dynamically involved, 
and vascular endothelial cells decrease as IPF progresses. In addition, 
UNAGI identified cell-specific gene regulators such as CTCF, EP300 
and SMC3, along with dynamic markers such as COL1A1 and COL14A1, 
and static markers for sub-cell types, such as NLGN1 and MFAP5, for 
fibroblast adventitial cells, potentially leading to new biomarkers 
and precise therapies. Furthermore, UNAGI highlighted potential IPF 
therapeutic pathways, including Netrin-1 signalling and ROBO recep-
tors, and potential drugs such as nifedipine as an anti-fibrotic, as well 
as identified repurposed drugs for COVID-19, such as aloxistatin and 
didanosine, demonstrating its broad potential in biomedical research.

Despite its array of abilities, it is imperative to recognize UNAGI’s 
limitations, especially its dependency on the CMAP database for in 
silico drug perturbation. The CMAP database, though invaluable, has 
its set of challenges. It does not encompass all potential drugs and 
compounds, thereby narrowing UNAGI’s drug screening horizon. In 
addition, the impact of drug perturbations on a variety of cell types 
within CMAP remains either inadequately explored or ambiguous. 
Incorporating a more detailed and expansive drug perturbation or 
drug target database could amplify UNAGI’s prowess in in silico drug 
perturbation. Lastly, as different patients may develop distinct disease 
progression patterns146, it is crucial to classify patients into progressors 
and non-progressors for precision medicine. While the UNAGI model 
was not specifically developed for this application, it can be custom-
ized by incorporating a classifier to predict the patient category from 
the learned cell embeddings. In addition, UNAGI can predict effective 
drug candidates through in silico screening, but it is not able to fully 
elucidate their mechanism of action. However, these efforts are beyond 
the scope of this study.

UNAGI is an AI-based computational framework designed to 
uncover distinct cellular trajectories during disease progression, ana-
lyse regulatory and perturbation shifts, and predict drugs that can 
reverse these shifts. We demonstrated its performance on a unique 
dataset of tissues from patients with IPF, providing detailed observa-
tions, proteomic and experimental validations, and its applicability 
to another disease, COVID-19. The widespread availability of UNAGI is 
expected to enhance our understanding of complex diseases and accel-
erate therapeutic development by repositioning known compounds 
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and modelling their effects. Beyond disease-related applications, 
UNAGI can potentially be applied to developmental systems such 
as embryogenesis147, organogenesis148 and neurogenesis149 to infer 
underlying temporal GRNs and identify potential interventions for 
manipulating cell fates.

Methods
Dataset description and preprocessing
snRNA-seq IPF dataset. In this study, we used snRNA-seq technology 
to profile the IPF disease progression. For the advantages of using 
snRNA-seq over scRNA-seq in this study, see Supplementary Note 4. 
The snRNA-seq IPF dataset was collected from a total of 19 individu-
als, comprising 10 healthy donors and 9 patients with IPF. Biobank-
ing was approved by the local medical ethics committee of the KU 
Leuven University Hospital (ML6385). A secondary approval (number 
2000025427) at the Yale Institutional Review Board was obtained. 
Recognizing that different regions of the lung may be at varying tis-
sue fibrosis grades of disease progression47, we utilized cells isolated 
from these distinct regions within the IPF lung to model the temporal 
progression of IPF. Altogether, the dataset consists of 30 samples from 
control subjects and 24 samples from patients with IPF. We elaborated 
the details of step-by-step data preprocessing and cell-type assign-
ments (the ‘ground truth’ column in Supplementary Fig. 1) of the IPF 
dataset in Supplementary Note 4. Following the preprocessing, we 
adopted the stromal cell line that encompassed 231,477 cells and 2,484 
genes to validate the UNAGI method.

scRNA-seq COVID-19 PBMC dataset. We used an annotated PBMC 
COVID-19 dataset128 containing more than 780,000 cells from 130 
patients. We subsetted the dataset by using patients with ages between 
50 and 69 to evaluate the generalizability of UNAGI. In total, we have 
246,948 cells from 47 patients, 26 of them are males and 21 of them 
are females. According to the severity of patients, we categorized 
them into four COVID-19 severity levels. Specifically, 10 patients were 
categorized as healthy (36,198 cells), and 10 patients were classified as 
asymptomatic or mild (62,856 cells). The moderate data is composed 
of 15 patients (97,266 cells), while the severe or critical comprises 12 
patients (50,628 cells). In the preprocessing step, we selected the top 
6,000 highly variable genes for downstream analysis.

Graph VAE-GAN
Our UNAGI method introduces a graph VAE-GAN model. To leverage 
cellular neighbours to diminish the effects of dropouts and noise21, we 
stacked a cell graph convolution (GCN) layer on top of VAE. A graph 
convolution layer is a specialized type of neural network that can cap-
ture the topological structure of data, particularly by identifying fea-
tures within local neighbourhoods. GCN aggregates cell–cell 
relationships to construct a graph (V,E), where V denotes the vertices 
(cells) and E represents the edges (connections between cells). To 
establish this graph, the K-nearest neighbours (KNN) algorithm is used 
to build the connectivity matrix A, which defines the similarity between 
cells. The graph convolution is defined as fGCN (X,A) = α (AXW

GCN) , 
where WGCN refers to the trainable weights of the GCN layer and α is the 
activation function. Importantly, cells from different disease grades 
(phases of cellular states during disease progression, characterized by 
patient samples or cells) are not connected in the connectivity graph 
A, maintaining a disease grade-specific cell graph convolution.

UNAGI uses a VAE-based deep-learning model30 to model the cel-
lular dynamics behind complex disease progression and simulate the 
drug perturbations. The VAE’s encoder–decoder structure can model 
the probability distribution of high-dimensional data in a 
lower-dimensional space and generate new samples from this 
reduced-dimensional distribution. As a variational method, it facilitates 
the in silico perturbation of cells by modulating their gene expressions. 
To refine the generative ability of VAE, we followed the previous 

method150 to use GAN to guide the generation of VAE with the min–max 
training strategy151. The encoder of the graph VAE-GAN, Eθ:Rn → Rl, con-
sists of a GCN layer and several multi-layer perceptrons (MLPs). It can 
transform a cell xi∈Rm to its corresponding l-dimensional latent vector 
zi. The GCN layer takes the normalized cell-by-gene count matrix X and 
connectivity matrix A, generating a graph representation 
fGCN(X,A) = α(AXWGCN), where WGCN are weights of the GCN layer and α is 
the activation function. Acknowledging that the latent distribution of 
single-cell data follows a multivariate normal distribution, two MLPs 
are used to determine the mean vectors μz = fμθ (μz| fGCN (X,A))  and 
log-standard deviation vectors logσz = fσθ (logσz| fGCN (X,A)) of the latent 
representation. The standard deviation of the latent representation is 
σz = eσz. The latent representation for a cell is represented as z∼𝒩𝒩 (μz,σ2z), 
and the approximated posterior distribution is represented as qθ (Z|X,A).

The decoder pφ ∶ Rl → R3n  takes Z as input to reconstruct the 
cell-by-gene count matrix. We used the ZILN distribution to model the 
gene expression. The ZILN model is a composite distribution that 
integrates two distinct distributions: the first part is a Bernoulli distri-
bution, Bernoulli (ϱ), which accounts for the dropout events commonly 
observed in single-cell sequencing. The second component of the ZILN 
model captures the actual gene expression levels following a log trans-
formation, represented by log𝒩𝒩 (μ,σ2) . The likelihood function of a 
reconstructed cell x∈Xm×n, where m is the number of cells and n is the 
number of genes in a cell, can be written as

pφ(x|z) = ∏
j∈n
ZILN(xj|ϱj,μ j,σ2j)

= ∏
j∈n
[ϱjδ0(xj) + (1 − ϱj)LN(xj|μj,σ2j)(1 − δ0(xj))]

(1)

LN (xjjj|μj,σ2j ) =
⎧⎪
⎨⎪
⎩

1
xjjjσj√2π

e
−(lnxjjj−μj)

2

2σ2j , if xjjj > 0

0, if x j = 0

(2)

δ0(xjjj) = {
1, if xjjj = 0

0, if xjjj > 0
(3)

To reconstruct the cell-by-gene matrix X, the decoder pφ learns 
parameters of the ZILN distribution, including the zero-inflation prob-
ability ϱ = fϱϕ (ϱ|Z), scale of the log-normal distribution σ for each gene 
(a vector of learnable parameters) and mean μ of the log-normal dis-
tribution, denoted as μ = fμϕ ( μ|Z,σ) . The prior distribution p(Z) is a 
multivariate standard normal distribution. Within our framework, we 
designated the entire graph VAE model as the generator G. The loss 
function of the generator LG can be formulated as

LG = L(θ,φ,X,A) = KL(qθ(Z|X,A)||p(Z )) − Eqθ(Z|X,A)[logpφ(X|Z )] (4)

The first term of LG is the Kullback–Leibler (KL) divergences, which 
quantifies the difference between the latent representation qθ (Z│X,A) 
learned by the encoder and the predefined prior distribution p(Z). The 
second term is the expected log-likelihood of the input data given the 
reconstruction generated by the decoder, acting as a reconstruction 
loss. Together, LG promotes the model’s generative performance with 
the probabilistic constraints of the latent space.

To further refine the generative capabilities of the graph VAE, an 
adversarial discriminator is incorporated into the model’s architecture. 
This discriminator is a classifier based on MLPs to distinguish between 
original cells X and the reconstructed cells G(X,A) generated by the 
graph VAE. A min–max adversarial training strategy is then applied, 
aimed at optimizing the loss function LGAN:

LGAN = L(X,A) = minG max
D

𝔼𝔼X[log(D(X))] + 𝔼𝔼X[log(1 − D(G(X,A)))] (5)
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Here D is the adversarial discriminator, and G is the generator (graph 
VAE). During the training phase, cells are labelled as real or fake (pro-
duced by the generator for the purpose of adversarial training). The 
discriminator, D, is optimized to effectively distinguish between real 
and fake cell labels, aiming to maximize the probability of correctly 
identifying real and generated cells. Simultaneously, the second term 
of LGAN incentivizes the generation of cell reconstructions that are 
highly similar to the original data that D cannot distinguish them from 
real cells. The overall loss function of UNAGI, denoted as L, is a com-
posite of the graph VAE loss and the GAN, written as L = LG + LGAN. 
Although it appears to suggest that VAE-GAN back propagates the sum 
of LG and LGAN, in practice, the optimization involves distinct phases for 
each component. Within the same epoch, a two-step optimization is 
applied: in the first step, the graph VAE-GAN is optimized based on the 
LG and the parameters are optimized using LGAN in the second step. By 
integrating these components, UNAGI harnesses the strengths of vari-
ous architectures, the GCN can leverage the cell–cell relationship 
information, the VAE can model the complex single-cell data, and the 
GAN can refine the quality of cell generation.

Dynamics graph and underlying GRN inference
UNAGI builds a dynamic graph to illustrate the progression of each cell 
population (cell type or subtypes) throughout disease progression. We 
applied Leiden clustering152 on the latent embeddings, generated by 
graph VAE-GAN, to identify distinct cell populations at each disease 
grade (see Supplementary Note 5 for the clustering parameters opti-
mization strategy). To measure distances between cell populations 
in adjacent disease grades, we used the KL divergence rather than the 
Euclidean distance, which can be problematic in high-dimensional 
data contexts153,154. For each cell population (for example, cell type), we 
approximated its distribution using a Monte Carlo sampling strategy155 
involving the sampling of each dimension of the latent embeddings 
a thousand times to form a multivariate normal distribution. The KL 
divergence is calculated to measure the distance between these popula-
tions’ multivariate normal distributions.

In addition, we identified the top 100 DEGs in each cell  
population. We then calculated DEG distances among cell  
populations across disease grades. The DEG distance is defined as 
𝒯𝒯d (DEGc1,DEGc2) × ∑j∈DEGc1 |R

c1
j − R

c2
j |, where the first term is the Jaccard 

distance between DEGc1 and DEGc2, DEGs of two cell populations. The 
second term considers the ranking difference between two DEG lists. 
Here Rc1j andR

c2
j  represent the ranking of gene j in DEGc1andDEGc2, respec-

tively. To render the KL divergence and the distances of DEGs compa-
rable, we implemented min–max normalization for each metric across 
all potential connections within a specific cluster. After normalization, 
we represented the distances between each cluster pair as the sum of 
the normalized KL divergence and the normalized DEG distances. We 
then compiled these normalized distances for all possible connections 
across various disease grades to create a background distance distribu-
tion. This distribution is essential for assessing the statistical signifi-
cance of connections between clusters throughout the different grades 
of the disease. In scenarios where a cluster is connected to more than 
one cluster in an adjacent grade, the most statistically significant  
one is used. These significant connections form tracks that trace from 
the control to the final grade of the disease, defining the disease pro-
gression. Consequently, the dynamic graph Gdynamic  includes these 
progression tracks, each representing a comprehensive cellular state 
transition associated with a specific cell population during disease 
progression.

Moreover, we used iDREM (Interactive Dynamic Regulatory Events 
Miner)46, a machine learning model based on an input–output hidden 
Markov model, to reconstruct the temporal GRN underlying the recon-
structed cellular dynamics graph Gdynamic  (Supplementary Note 6). 
iDREM also captures the gene regulators that modulate those gene 
paths during disease progression. The dynamic genes and gene 

regulators identified through this process are considered dynamic 
marker candidates and hold potential as therapeutic targets for  
the disease.

Iterative training strategy of UNAGI
The training strategy for UNAGI is structured as an iterative pro-
cess, consisting of two primary phases that are cyclically repeated: 
(1) learning cell embeddings using the VAE-GAN framework and (2) 
constructing a cellular dynamics graph and identifying critical genes 
and gene regulators. Initially, with the cell embeddings learned with 
equal importance of all genes in the loss function (generic learning as 
in existing methods), we used the dynamics graph module to recon-
struct the cellular dynamics and identify critical genes that influence 
disease progression, using the iDREM algorithm. UNAGI establishes a 
gene-weight table for each cell, increasing the weights of key genes and 
their regulators to reflect their roles in disease progression. To mitigate 
cell mis-clustering at initialization, UNAGI uses a weight-decay strat-
egy where genes strongly associated with disease progression retain 
consistently increasing weights, while noisy genes have their weights 
progressively reduced in each iteration, preventing their influence 
from accumulating by the end of training. See Supplementary Note 7  
for methodological details. Supplementary Figs. 18–20 illustrate the 
effectiveness and robustness of this weight-decay-based iterative 
training strategy.

Next, in the cell embedding learning of the subsequent iteration, 
the VAE model undergoes fine-tuning with a modified loss function that 
accentuates the high-weight genes. This enhancement is accomplished 
by integrating the gene weights in all cells into the reconstruction 
loss function, thereby shifting the model’s focus from generic genes 
to those disease-associated genes identified through GRN inference. 
During each iteration, after the cell embeddings are updated, the 
cellular dynamics module steps in to rebuild the cellular dynamics 
graph and the associated GRNs. This step plays a crucial role in refin-
ing and updating the disease-associated genes. These enhancements 
feed back into and improve the cell embedding learning in the next 
iteration. However, the revised cell embeddings generate an updated 
cellular dynamics graph and its GRN, offering a deeper understanding 
of disease progression and potentially advancing the identification of 
disease-specific genes, which in return improves the cell embedding 
learning in the next iteration.

Upon model convergence, the highest-weighted genes are asso-
ciated with the disease and thus indicating that UNAGI can indeed 
‘comprehend’ the disease and recognize important disease-relevant 
genes during the iterative training. For instance, enrichment analysis 
shows that the top 100 weighted genes are closely associated with IPF 
(Supplementary Fig. 21). At each training iteration t, the gene weights 
are transformed into a ranking matrix, Rt. The objective functions of 
UNAGI during its iterative training can be then refined as follows to 
integrate the distilled disease knowledge in the gene-weight table 
for each cell:

LtG = L(θ
t,φt,X,A) = KL(qθt (Z|X,A)||p(Z))

−𝔼𝔼qθt (Z|X,A) [logpφt (X|Z) (1 +
1

(Rt)τ
)]

(6)

LtGAN = L(X,A) = minGt max
Dt

𝔼𝔼X[log(Dt(X))] + 𝔼𝔼X [log(1 − Dt(Gt(X,A)))] (7)

Lt = LtG + LtGAN, t ∈ (0, 1,… ,T ) (8)

Here Gt represents the generator at the tth iteration, and Dt is the dis-
criminator at the same iteration. LtG denotes the loss of generator, LtGAN 
denotes the loss of GAN at the tth iteration and τ is a hyper-parameter 
that is responsible for controlling the influence of gene weights on the 
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reconstruction loss (empirically set τ as 0.5). UNAGI increases the 
weights for high-ranking genes to emphasize disease-associated genes 
and regulators. The weights for low-ranking genes remain roughly 
unchanged, ensuring that information associated with those genes is 
not discarded. Through this iterative training, UNAGI progressively 
improves its ability to generate disease-specific cell embeddings. This 
approach allows for the identification of disease-specific markers and 
supports disease-specific in silico perturbations.

Dynamic and hierarchical static markers discovery
To characterize the temporal progression of the disease for each cell 
population, UNAGI identifies dynamic markers that are genes that 
change considerably throughout the disease’s progression. For each 
track in the cellular dynamics graph, iDREM identifies the gene paths 
with co-expression patterns during disease progression. Then UNAGI 
generates the background simulation tracks to identify dynamic mark-
ers. This simulation process is repeated N times (N > 1,000) to establish 
a random background distribution. We then evaluated the P values 
for each candidate marker based on its accumulated sum fold change 
against this background distribution. We imposed a more stringent 
FDR cut-off (FDR < 0.01) than the default (FDR < 0.05). These selected 
dynamic markers are important in delineating the progression tracks 
and provide a detailed understanding of the longitudinal evolution of 
the disease within each distinct cell population.

The hierarchical static marker discovery approach supports the 
identification of intra-disease grade static markers through hierar-
chical clustering. UNAGI conducts hierarchical clustering based on 
the embeddings of cell populations at each disease grade, thereby 
generating dendrograms to depict the relationships among these 
populations. In this dendrogram, when focusing on a particular 
cluster, we analysed it at various levels to identify hierarchical static 
markers. At lower levels of the dendrogram, the selected cluster 
compares with a broader range of sibling clusters. Conversely, at 
higher dendrogram levels, the siblings are more closely related to 
the selected cluster. This closeness allows for the identification of 
markers that highlight the subtle heterogeneities among cell sub-
populations within the same cell type. For details of marker discovery, 
see Supplementary Note 8.

In silico perturbation strategies
In silico perturbation can be executed through two strategies: (1) direct 
gene expression regulation. This approach involves the direct upregula-
tion or downregulation of specific genes of interest. For a cluster of cells, 
we defined an expression regulation vector Δ = [Δg1,Δg2,… ,Δgn], where 
each ∆gn represents the expression change of gene gn (for example, 
∆g1 = 0.5 would indicate an increase in the expression of gene g1 by 0.5). 
The gene expression for a perturbed cell population X′c can be defined as

X′C = max (XC + 1McΔ,0) (9)

Here Xc represents the original cell-by-gene matrix of a cell population 
c, and Mc represents the number of cells within the cell population. 
(2) Gene interaction (GI) network-based regulation allows simulating 
the downstream effects of GRNs. In this strategy, we could regulate 
the genes of interest and their interacting partners based on the GI 
network. If one gene expression is changed, the changes are transmit-
ted to connected gene in the GI networks according to the influence 
factor I between them. The GI networks were built based on the HIPPIE 
database156 and STRINGDB157. From these two databases, we obtained 
the strength of GIs γ of different gene pairs. For a certain cell population 
c, we transformed the cell-by-gene matrix Xc into a gene-by-cell matrix 
Yc and used PCA to generate low-dimensional embeddings Pgene for each 
gene across the cell population. The influence factor I(Q,R)∈(−1,1) quan-
tifies the extent to which the perturbation of a given gene Q impacts 
on another gene R. I(Q,R) is defined as

I(Q,R) =
⎧
⎨
⎩

0, ifQ andR are not connected

sgn(cor( yyyQ,yyyR))exp (−ws
‖PQ−PR‖2
∏k∈(Q,R)γk

) ,otherwise
(10)

sgn(x) =
⎧⎪
⎨⎪
⎩

1, x > 0

0, x = 0

−1, x < 0

(11)

Here yQ and yR are gene expression vectors of genes Q and R, respec-
tively, in the Yc. The term (Q,R) denotes a sequence of hops from Q to R 
in the GI network, γk denotes the strength of GIs of a hop in (Q,R), ws is 
the steepness weight (ws > 0 and empirically set to 0.2 by default) to 
control the influence factor, cor(yQ,yR) quantifies the correlation 
between two genes, and sgn(x) indicates the direction of their interac-
tions. The gene of interest tends to impose higher impacts on genes 
that directly interact with. Conversely, genes that are further away in 
the GI network are less influenced. When regulating a specific gene η 
by changing a certain magnitude Δη (for example, Δη = −0.5 can decrease 
the expression of gene η by 0.5). The expression regulation vector for 
this scenario is formulated as Δ = [ΔηI (η, g1) ,ΔηI (η, g2) ,… ,ΔηI (η, gn)] .  
If multiple genes GP  are perturbed with individual magnitudes, the 
expression regulation vector is

∆ = [ ∑
iϵGP

∆iI(i, g1), ∑
iϵGP

∆iI(i, g2),… , ∑
iϵGP

∆iI(i, gn)] (12)

The gene expression for a perturbed cell population X′c is then 
calculated as defined in equation (9). Not only does the GI-based in 
silico perturbation impact genes that are not direct drug targets, but 
the nonlinearity feature of deep neural networks can also affect indi-
rect target genes (even only directly changing the expression of drug 
targets). The graph VAE model can extract the gene–gene relationships 
within a cell and reconstruct cells based on these features. When per-
turbing genes using the pre-trained encoder, the nonlinear architec-
ture helps propagate the expression changes to downstream targets. 
This is facilitated by the weights and biases of the encoder, which are 
optimized to describe the gene regulatory information within the cell. 
This mechanism allows the model to simulate the downstream effects 
of GI networks, thereby impacting other genes at the cell embedding 
level by modifying only a few genes.

In silico perturbation scoring
We performed perturbations on every disease grade of individual 
tracks using the perturbed cell-by-gene expression matrix X′. This 
matrix X′ is fed into the encoder of the graph VAE-GAN, yielding the 
perturbed latent cell representation Z′ = Eθ(X′,A). The efficacy of these 
perturbations is assessed by examining the changes in the distances 
between cell populations within the latent cell embedding space. 
Specifically, the distance between two cell populations in the latent 
space Z can be quantified as δi′, j = ‖Z′i − Z j‖2, where i′ is the perturbed 
cell population and j is another cell population within the same track. 
The perturbation score of a track Strack∈[−1, 1] at a perturbed disease 
grade i is defined as

Strack (i) =
1
T

T
∑

j=0, j≠i
(1 − 2

1 + exp (w (δi′ , j − δi, j) sgn ( j − i))
) (13)

Here T represents the total number of disease grades, i is the per-
turbed disease grade, w is a hyper-parameter to control the scaling 
(empirically, w is set as 100 in our case), δi,j is the distance between 
disease grades j and i (unperturbed), and δi′,j is the distance between 
disease grades j and i (perturbed). The function sgn(x) (as defined 
in equation (11)) is a perturbation indicator function to ensure the 
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perturbed cell population that comes closer to the control grade will 
always have a positive and higher score while moving away leads to 
a negative and lower score. In addition to track-level perturbation 
scoring, an overall score S assesses perturbation effects across all 
tracks. This overall score is normalized based on the proportion of 
cells in each perturbed track within the dataset. It also incorporates the 
gene-regulating directions of compounds, as indicated in the relevant 
database, including their reversed directions. The overall score S for 
all disease grades is defined as follows:

S = ∑
h∈tracks

Nh
N

∑
i∈stages

|S𝒜𝒜h (i)−S
ℬ
h (i)|

2 (14)

where 𝒜𝒜 represents the perturbation direction that aligns with the 
reported direction of the drug target expression change, while ℬ 
denotes the opposite drug target expression change direction as 
reported in the CMAP database. The overall score S∈[0, 1] is calculated 
by considering in silico perturbations in both directions, enhancing 
robustness. This approach is based on the premise that perturbing 
the targets of an effective drug in opposite directions should lead to 
a higher S𝒜𝒜h (i) and lower Sℬh (i), resulting in an increased score S. N here 
is the total number of cells and Nh is the number of cells in the per-
turbed track.

Therapeutic pathways screening
We used pathway data from REACTOME158, MatrisomeDB159 and KEGG160 
databases, providing lists of genes associated with various biological 
pathways. Since the set of genes in individual single-cell transcriptome 
datasets can vary, we only included expressed genes of pathway targets 
after preprocessing for in silico pathway perturbations. We applied the 
scoring and ranking strategies as discussed in the ‘In silico perturbation 
strategies’ and ‘In silico perturbation scoring’ sections above to identify 
potential therapeutic pathways. To assess the significance of our in 
silico pathway perturbations, we established a random background 
dataset by randomly sampling n genes 1,000 times, where n is set to 
the median number of genes across all pathways. The perturbation 
strength Δ used for random background perturbations was matched 
to that used for the actual pathway in silico perturbations. We executed 
in silico perturbations using the random dataset described above to 
generate a random background therapeutic score distribution. By 
contrasting the perturbation scores with this background distribution, 
we could ascertain the statistical significance of the in silico pathway 
perturbations. This approach aids in identifying potential therapeutic 
pathways with an FDR-BH of less than 0.05. To further validate the 
robustness of our pathway perturbation strategy, we conducted a simu-
lation study using the Netrin-1 pathway. We replaced 15% of the genes in 
this pathway with random genes and conducted in silico perturbations, 
comparing these results with perturbations using a completely random 
set of genes. Across 100 experiments with different random seeds, the 
median perturbation score of the modified Netrin-1 pathway remained 
very close to the original score (0.6351 versus 0.6548), while the random 
gene sets scored considerably lower (Supplementary Fig. 22).

Candidate drugs and compounds screening
We used compounds and their target genes from the CMAP database34,35, 
which contains 34,396 compound or drug profiles. Similar to the path-
way perturbation, we used expressed genes after preprocessing and are 
listed as drugs’ targets for in silico drug perturbations. We applied the 
scoring and ranking strategies as discussed in the ‘In silico perturbation 
strategies’ and ‘In silico perturbation scoring’ sections above to identify 
potential drug candidates. The method for calculating the statistical 
significance of in silico drug perturbations was akin to that used for 
therapeutic pathway perturbations, as mentioned previously. The 
primary distinction lies in the number of genes selected for creating 
the random background score distribution.

Verify UNAGI biomarkers by proteomics data
Proteins were extracted from pulmonary tissues using the MPLEx 
protocol161–164. Thirty tissue blocks from IPF donors and 10 from con-
trol donors were used. For detailed experiments, protocols and data 
preprocessing, see Supplementary Note 9. After preprocessing, we 
adopted a more stringent FDR cut-off (FDR < 0.01) than the default 
(FDR < 0.05) to identify highly confident dynamic proteins. To verify 
the temporal dynamic markers determined for each progression track, 
we applied hypergeometric testing. This test assessed the overlapping 
ratio between dynamic proteins and dynamic markers. The overlapping 
between these two marker lists associated with a track is considered sta-
tistically significant if the FDR from the hypergeometric test is less than 
0.05. We then used heat maps to visualize the LFQ intensities and gene 
expression from proteomics data and snRNA-seq data, respectively.

PCLS experiments
To assess UNAGI predictions in a human-relevant context, we utilized 
PCLS. Recent studies suggest that PCLS provides a more accurate rep-
resentation of human IPF compared with traditional animal models165. 
The commonly used bleomycin mouse model suffers from notable 
discrepancies between human and mouse biology, particularly in the 
context of human pulmonary fibrosis166–168. We adopted nifedipine in 
our PCLS experiments because nifedipine or any other calcium entry 
blockers are not on the radar for pulmonary fibrosis drug develop-
ment and nifedipine’s anti-fibrotic effectiveness had not been tested in 
human samples before. Therefore, PCLS serves as an important tool for 
providing a more human-relevant model to investigate the anti-fibrotic 
efficacy of nifedipine165,169.

Fresh lung tissue of explanted donor lungs was used for human 
PCLS according to previously published protocols44,123,170. Donor 
lung samples were sourced from six males and four females and were 
obtained from the Center for Organ Recovery and Education (CORE) at 
the University of Pittsburgh. Donor lung samples originated from lungs 
deemed unsuitable for organ transplantation. For the fibrosis induc-
tion in hPCLS, PCLS were treated for 5 days with a control cocktail (CC), 
including all vehicles or a pro-fibrotic cocktail (FC) consisting of TGFβ 
(5 ng ml−1, Bio-Techne), PDGF-AB (10 ng ml−1, Thermo Fisher), TNF-α 
(10 ng ml−1, Bio-Techne) and LPA (5 µM, Cayman Chemical) as described 
before123,171. For drug treatments, PCLS were treated with FC allowing 
for the induction of fibrosis, and drug treatment started at day 3 until 
day 5. At the end of the experiment, PCLS were snap-frozen individually 
in liquid nitrogen for single-nuclei analysis, as described above. The 
study was approved by the University of Pittsburgh (IRB PRO14010265). 
Written informed consent was obtained for all study participants. 
Nuclei were extracted using the Nuclei Isolation kit (CG000505, 10x 
Genomics). Nuclei (20,000) were loaded on a Chip G with Chromium 
Single Cell 3′ v3.1 gel beads and reagents (3′ GEX v3.1, 10x Genomics). 
Final libraries were analysed on an Agilent Bioanalyzer High Sensitiv-
ity DNA chip for qualitative control purposes. cDNA libraries were 
sequenced on a HiSeq 4000 Illumina platform aiming for 150 million 
reads per library and a sequencing configuration of 26 base pair (bp) on 
read1 and 98 bp on read2. We used Cell Ranger124 (v4.0.0), Cutadapt172 
(4.1) and STAR (v2.7.9a) to build fastq reads, contaminant trimming 
and reads alignment. Then we used Seurat for data preprocessing (see 
Supplementary Note 10 for details).

We then applied the graph VAE-GAN to learn the latent embeddings 
of the PCLS data. To quantify the effects after treating the fibrosis cells 
with the drugs, we calculated the pairwise Euclidean distance from 
control cells to real treatment cells and fibrosis cells in the reduced 
latent space. We used the difference between the centroid of fibrosis 
cells and the centroids of real treatments as the perturbation strength 
vector Δ. We conducted in silico drug perturbations on fibrosis cells 
using a consistent perturbation strength Δ. The efficacy of these in 
silico perturbations was evaluated through UMAP visualizations and by 
measuring the pairwise Euclidean distances between cell embeddings 
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in latent space. Our primary objective was to ascertain if in silico drug 
perturbations could replicate the cell embeddings in latent space as 
observed with actual drug treatments, thereby validating the accuracy 
of UNAGI-driven in silico drug perturbations. In addition, to compare 
the similarity of the differential genes associated with the in silico drug 
perturbations (in silico drug perturbation versus fibrosis) and those of 
real drug treatment (drug versus fibrosis), we used RRHO plots. Moreo-
ver, box plots and the R2 score with F-test were used as analytical tools 
to quantify gene expression similarities between cells under actual 
drug treatments and cells produced from our in silico perturbations 
for both nintedanib and nifedipine.

Benchmarking
Embedding quality. To evaluate UNAGI’s performance in learning 
latent embeddings from single-cell data, we compared it with several 
other methods by running individual methods ten times with differ-
ent random seeds. These included VAE-based dimensionality reduc-
tion techniques such as scVI19 and scGEN33, the foundation models, 
scGPT31, Geneformer144 and Universal Cell Embeddings (UCE)173, other 
deep-learning methods using GAN or GCN, including GraphSCC22, scG-
GAN20 and scGNN21, as well as standard single-cell analysis pipelines 
such as Seurat and SCANPY. To show the necessity of using rigorous 
data cleaning and normalization strategies to preprocess the complex 
single-cell dataset (for example, the IPF dataset), we kept the top 2,000 
highly variable genes and ran standard SCANPY pipeline to analyse the 
raw IPF dataset. We adopted bio-conservation metrics from Luecken 
et al.145, including ARI, NMI, graph cell-type local inverse Simpson’s 
index (graph cLISI), silhouette score, cell-type ASW, isolated label 
F1 and isolated label silhouette score, SCIB bio-conservation overall 
score145 along with Davies–Bouldin index (DBI)174 and label score175 
to evaluate the benchmarking methods. The label score assesses the 
consistency of cell types in the cell neighbourhoods. The DBI measures 
the average similarity ratios between clusters. The silhouette score 
evaluates the cohesion and separation of clusters in the embedding 
space, and cell-type silhouette score assesses the cohesion and sepa-
ration of cell populations in the embedding space. Isolated cell-type 
F1 score describes how well isolated cell types are distinguished from 
other cell types. ARI and NMI calculate the coherence between the 
cell populations identified by clustering methods and ground truth 
cell types. Graph cLISI measures the preservation of cell populations 
across datasets and is a critical metric for assessing the robustness and 
generalizability of cell embeddings. The SCIB overall bio-conservation 
score is the average of ARI, NMI, cell-type ASW, isolated cell-type F1, 
isolated cell-type ASW and graph cLISI. In our IPF dataset, we provided 
handcraft cell-type annotations derived by recursively annotating and 
refining cell types on individual samples. Thus, the results from the 
standard Seurat pipeline cannot serve as a perfect proxy for the ground 
truth scores to evaluate the clustering results from other methods. 
Because UCE is designed specifically for the zero-shot usage, we only 
tested it in zero-shot mode (Supplementary Fig. 12 and Supplemen-
tary Note 11), while scGPT and Geneformer were evaluated in both 
fine-tuned and zero-shot settings. See benchmarking method details 
in Supplementary Note 12.

Computing efficiency. To evaluate the computational efficiency 
of processing large-scale single-cell data, we analysed the memory 
requirements and running time of various deep-learning methods, 
including UNAGI, scGEN, scGPT, scVI, GraphSCC, scGGAN and scGNN. 
The experiments were conducted on a workstation equipped with an 
RTX 4090, AMD Ryzen Threadripper Pro 5965wx and 256GB RAM. We 
downsampled the IPF dataset (231,477 cells with 2,484 genes) into 
subsets of 23,000 cells (~10%), 46,000 cells (~20%), 58,000 cells (~25%), 
116,000 cells (~50%) and 173,000 cells (~75%) to assess the efficiency of 
each method on different scales. After data cleaning and normalization, 
we ran each method, recording the total running time and memory 

usage for preprocessing, model training, clustering and UMAP genera-
tion. We also compared the inference efficiency of all benchmarking 
methods using the IPF dataset with 231,477 cells and 2,484 genes.

Disease-associated pathway identification. We benchmarked against 
existing methods to identify disease-associated pathways by using the 
embeddings generated by other methods to build the dynamic graphs 
and run iDREM to reconstruct the temporal regulatory networks for 
individual cell tracks (the trajectories represent the change of cellular 
states associated with a certain cell population during disease progres-
sion, from healthy to the end disease grade). We used the most increas-
ing set of genes from the iDREM results of fibroblast alveolar tracks to 
perform pathway enrichment analysis to identify disease-associated 
pathways. We used the cell embeddings generated from the embedding 
quality benchmarking experiments to build the dynamics graphs and 
perform the pathway identification experiments using Toppgene176. 
We used the –log10(FDR) to represent the significance of identified 
pathways from the Toppgene.

Disease marker identification. In a manner similar to the identification 
of disease-associated pathways, we derived the temporal dynamics 
graph using identical experiment settings. We then proceeded to iden-
tify the dynamic markers in fibroblast cell tracks by using the method 
described in the ‘Dynamic and hierarchical static markers discovery’ 
section. To evaluate the agreement between the disease markers and 
the proteomics markers, we performed the hypergeometric test to 
evaluate the overlapping of dynamic markers and proteomics mark-
ers described in the section ‘Verify UNAGI biomarkers by proteomics 
data’ of Methods.

In silico drug screening simulation. We benchmarked UNAGI against 
scGPT31, scVI19, Geneformer144 and scGEN33, and directly calculated 
the shifts in the gene space (denoted as ‘Original’) on the in silico drug 
screening task. We excluded UCE from this drug screening benchmark-
ing owing to its high computational complexity (Extended Data Fig. 4c). 
We separated the dataset into healthy control and IPF disease groups 
to train the scGEN to learn the transition between IPF and healthy cells. 
For scVI, we used tissue fibrosis grades as the batch label to learn cell 
embeddings. scGPT was fine-tuned on the IPF data to generate the cell 
embeddings. To directly calculate the shifts in the original gene space 
(‘Original’), we did not perform dimensionality reduction. Using the 
same strategy as UNAGI, we modified the gene expression values as 
the input to send to these methods. Deep-learning-based methods 
calculate the in silico perturbation score in the cell embedding. For the 
‘Original’ method, we used the (1-CorrSpearman) as the distance metric to 
calculate the perturbation score.

To run the benchmarking experiments, we generated simulated 
data by shuffling gene expression profiles and implanting drug effects 
as ground truth by manually altering the expression of their target 
genes (see Supplementary Note 13 for details). For UNAGI, scGPT, 
Geneformer, scVI and scGEN, we pre-trained the model (fine-tuned 
scGPT and Geneformer) on the original dataset before executing simu-
lation tasks.

The modified fibroblast cells were then sent to the fine-tuned 
deep-learning models to obtain the perturbed cell embeddings. We 
established the random background score distribution by perform-
ing in silico drug perturbations 2,000 times on the original dataset by 
randomly sampling np genes, where np is sampled from the probability 
based on the number of target genes for the drugs that we used. The 
FDR of simulation perturbation scores was calculated against the ran-
dom score background distribution. We used FDR < 0.05 as the cut-off 
to determine whether the in silico perturbation could identify the 
simulated drug or not. Using this strategy, we can evaluate the model 
as a classifier in a binary classification task, specifically in determining 
the effectiveness of simulated drugs. The model’s performance in drug 
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screening was assessed using the AUROC and the AUPRC metrics, as 
implemented in scikit-learn177. In this binary classification setting, both 
the ROC and PRC curves have only one classification threshold of 0.5.

Predicting post-treatment gene expression changes. We bench-
marked UNAGI with scGPT, scGEN and scVI, and directly changed the 
gene expression (‘Original’) to predict the gene expression after treat-
ments using the snRNA-seq PCLS dataset. We excluded Geneformer 
from post-treatment gene expression prediction benchmarking owing 
to its BERT-based structure. This dataset consists of four groups of 
data, control, fibrosis cells, fibrosis cells after nifedipine treatment 
and fibrosis cells after nintedanib treatment. First, we trained UNAGI, 
scVI and scGEN on the control and fibrosis group of data. UNAGI treated 
them as the control and disease grades, scGEN considered them as two 
states, and scVI treated control and fibrosis groups as two batches. 
Second, we identified the top 10 DEG markers after ex vivo nintedanib 
and nifedipine treatments on fibrosis cells (treatment markers). We 
modified the expression of the top 10 nifedipine or nintedanib treat-
ment markers and sent the modified cells into the model to predict 
cells after treatments. For the ‘Original’ method, we directly modified 
the top nifedipine or nintedanib treatment markers in the gene space. 
For scGPT, the performance of scGPT in embedding cells increases 
largely after fine-tuning (Supplementary Note 14). Thus, we fine-tuned 
the model on the control and fibrosis cells and performed supervised 
perturbation prediction using fibrosis cells and treatment cells (see 
details in Supplementary Note 15). During the testing process, we 
investigated how the model can predict the perturbation using only 
the top 10 treatment markers, like other methods. We excluded GEARS 
in the benchmarking, because it fell short compared with scGPT and it 
lacks the ability to produce cell embeddings for in silico drug screen-
ing31. Then, we calculated the Pearson correlation of the changes from 
fibrosis cells to cells generated by models and cells after ex vivo treat-
ments. In addition, we analysed the relationship between top-weighted 
genes and the treatment markers. We used the Monte Carlo sampling 
strategy to determine the percentile of the ranking for a random set of 
100 genes. We also performed the pathway enrichment analysis using 
the Toppgene176.

Ablation study
To investigate the contribution of individual parts to UNAGI’s perfor-
mance, we conducted ablation studies on cell embedding, cell genera-
tion and the identification of disease markers and disease-associated 
pathways tasks using both IPF and the COVID-19 datasets. We compared 
UNAGI with UNAGI w.o. GCN and GAN, UNAGI w.o. GCN and UNAGI w.o. 
GAN to analyse the impacts of individual deep-learning components. 
We used ZINB distribution in UNAGI (UNAGI w. ZINB) to process the 
IPF dataset to evaluate the effectiveness of ZILN distribution. We also 
conducted experiments to compare scVI and scVI-ZILN in the IPF data-
set to show that ZILN distribution can also improve other methods. 
The UNAGI w.o. iteration strategy directly trains the UNAGI model to 
convergence without the iterative training strategy. The same as in the 
benchmarking experiments, we ran individual methods ten times with 
different random seeds.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
IPF snRNA-seq (GSE286182)178 can be publicly accessible at https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE286182. The COVID-19 
dataset (COVID-19 PBMC Ncl-Cambridge-UCL) is currently available 
from the COVID-19 Cell Atlas at https://covid19cellatlas.org/. The pro-
teomics data are publicly available via MassIVE with project identifier 
MSV000093129 (or Zenodo repository at https://doi.org/10.5281/

zenodo.15597088 (ref. 179)). The preprocessed PCLS data are available 
at our GitHub repository (https://github.com/mcgilldinglab/UNAGI). 
Hippie database156 can be publicly accessed at https://cbdm-01.zdv.
uni-mainz.de/~mschaefer/hippie/download.php. STRINGDB157 is pub-
licly available at https://string-db.org/. REACTOME158 can be accessed 
at https://reactome.org/, MatrisomeDB159 is available at https://matri-
somedb.org/, and KEGG160 can be found at https://www.genome.jp/
kegg/pathway.html. The Connectivity MAP (CMAP)35 database is pub-
licly available at https://clue.io/data/CMap2020#LINCS2020.

Code availability
The UNAGI software package and source code are available at our 
GitHub repository (https://github.com/mcgilldinglab/UNAGI)180. The 
results and downstream analysis are available at our web server (http://
dinglab.rimuhc.ca/unagi). All preprocessed.h5ad files used in this 
study are also available in the same GitHub repository. The software 
and third-party packages used in this work, including PyTorch (version 
2.0.0), SCANPY (version 1.9.5) and Pandas (version 2.1.0), are listed in 
Supplementary Note 16.
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Extended Data Fig. 1 | Statistics of the IPF dataset and tissue fibrosis grades 
binning based on surface density. a, A pie chart illustrating the distribution 
of Control (healthy) and IPF samples in the dataset. b, A bar chart showing the 
number of cells in each sample, ordered by their surface density, indicating  
the grade of tissue involvement in fibrosis (from Control to Advanced).  
c, A histogram representing the surface densities of the samples, categorized by 

grades as determined by a Gaussian density estimator. The plot includes curves 
representing the probability density of each Gaussian component and the overall 
multi-Gaussian distribution. d, A bar chart displaying the number of cells at each 
tissue fibrosis grade. e, A bar chart illustrating the number of cells per sample at 
each tissue fibrosis grade.
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Extended Data Fig. 2 | IPF tissue involvement is marked by surface density 
and fibrotic marker. a, Violin plots representing the alveolar surface density (of 
samples across different tissue fibrosis grades, with the mean surface density 

indicated by the red lines. b, Line plot of pathway enrichment scores across 
different tissue fibrosis grades c, Line plots of the gene expression of the fibrotic 
markers across different tissue fibrosis grades.
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Extended Data Fig. 3 | UNAGI identifies progressive heterogenous cell 
populations across COVID-19 stages. a, UMAP visualization of COVID-19 PBMC 
cells across various COVID-19 stages (Control, Stage 1: Asymptomatic or Mild, 
Stage 2: Moderate, Stage 3: Severe or Critical). Each point represents a cell, with 
the first column categorizing cells by type and the second column displaying 
Leiden cluster IDs. b, Gene dot plots of the canonical cell-type biomarkers 

associated with each of the identified cell types across four COVID-19 stages. The 
expression is normalized. c, Cell type composition chart of COVID-19 dataset. 
This chart provides a visual representation of changes in cell type composition 
throughout the progression of COVID-19, with different colors indicating specific 
cell types.
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Extended Data Fig. 4 | Benchmarking of running efficiency using the IPF 
dataset. a, Benchmarking of the peak memory (CPU) usage by different 
methods. The x-axis is the number of cells, and the y-axis is the peak memory 
usage of the method. b, Benchmarking of running time. The x-axis is the number 

of cells, the y-axis is the running time. The peak memory required to run scGNN 
exceeds the limits of our workstation (256GB RAM) when the number of cells 
surpasses 60,000. c, Benchmarking of inference time. The x-axis is the number of 
cells, the y-axis is the inference time.

http://www.nature.com/natbiomedeng


Nature Biomedical Engineering

Article https://doi.org/10.1038/s41551-025-01423-7

Extended Data Fig. 5 | Benchmarking of embedding quality against existing 
methods on the COVID-19 dataset. a, Adjusted Rand Index (ARI). b, Normalized 
Mutual Information (NMI). c, Cell type ASW. d, Isolated cell type F1 score.  
e, Isolated cell type ASW. f, Graph cLISI score. g, SCIB overall bio-conservation 
score. h, Silhouette score. i, Davis-Bouldin index (DBI); a lower DBI signifies 
better clustering. j, Label score. From left to right, the benchmarking methods 

are UNAGI, GraphSCC, scGEN, scGGAN, scGPT, Geneformer, scGNN, scVI, Seurat 
and SCANPY. The boxes represent the interquartile ranges (IQRs), and the solid 
lines indicate the medians. The whiskers extend to points within 1.5 IQRs of the 
lower and upper quartiles. The experiments in panels a-j run with different  
seeds (n = 10).
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Extended Data Fig. 6 | Ablation study to analyze the contribution of 
individual components to UNAGI’s performance. a, Adjusted Rand Index 
(ARI). b, Normalized Mutual Information (NMI). c, Cell type ASW. d, Isolated 
cell type F1 score. e, Isolated cell type ASW. f, Graph cLISI score. g, SCIB overall 
bio-conservation score. h, Silhouette score. i, Label score. j, Davis-Bouldin 
index (DBI); a lower DBI signifies better clustering. k, evaluates the similarity 
between original cells and generated cells. l, Benchmarking of the ability to 
identify disease markers. Boxplots illustrate the P-value resulting from the 
hypergeometric test of the overlap between proteomics markers and identified 

disease markers. m, Benchmarking of the ability to identify disease-associated 
pathways. The experiments in panels a-m run with different seeds (n = 10). The 
bar plots show the –log10(FDR) of the significance of each identified pathway. 
The boxes in a-l represent the interquartile ranges (IQRs), and the solid lines 
indicate the medians. The whiskers extend to points within 1.5 IQRs of the lower 
and upper quartiles. The error bars in m represent standard deviation (SD) and 
data are presented as mean values +/− SD. We applied one-sided hypergeometry 
test and FDR correction using the BH procedure in panels l and m.
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Extended Data Fig. 7 | Ablation studies show the contribution of individual 
components to the embedding quality using the COVID-19 dataset.  
a, Adjusted Rand Index (ARI). b, Normalized Mutual Information (NMI). c, Cell 
type ASW. d, Isolated cell type F1 score. e, Isolated cell type ASW. f, Graph cLISI 
score. g, SCIB overall bio-conservation score. h, Silhouette score. i, Davis-Bouldin 
index (DBI); a lower DBI signifies better clustering. j, Label score; k, evaluates 
the similarity between original cells and generated cells. From left to right, the 

ablation models are UNAGI, UNAGI without GAN and GCN component, UNAGI 
without GCN layers, UNAGI without the GAN module, UNAGI with the ZINB 
distribution, and Train UNAGI directly to the convergency without applying the 
iterative training strategy. The experiments in panels a-k run with different seeds 
(n = 10). The boxes in panels a-l represent the interquartile ranges (IQRs), and the 
solid lines indicate the medians. The whiskers extend to points within 1.5 IQRs of 
the lower and upper quartiles.
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